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Figure S1  
 

Representa�ve flow cytometric analysis of EGFP fluorescence intensity of parental 
293 cells and stably transfected PARP1cd cell lines. Cells were gated to exclude 
debris, followed by standard doublet exclusion.  
 

mP - 293 mitoPARP1cd, pP – 293 pexPARP1cd, cP – 293 cytoPARP1cd, erP – 293 
erPARP1cd. 
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gene name mP cP erP pP 
ASS1 0.41 0.34 0.43 0.38 
SCIN 0.62 0.65 0.50 1.75 
ANXA1 0.36 0.85 0.42 2.28 
ECH1 0.67 0.84 0.66 1.10 
H2AFY2 0.51 0.52 0.58 0.68 

     
NAMPT 1.00* 0.75 0.83* 0.81* 
NAPRT 0.50 0.58 0.80* 0.85* 

G

 

 

 

Figure S2  
 

A) PCA analysis of quan�ta�ve proteomics measurements. The graph shows the first 3 
principal components, which together account for about 55% of the total varia�on.  

B) Network enrichment analysis of proteins differen�ally expressed in stable PARP1cd 
cell lines in comparison to parental 293 cells including all proteins that are 
significantly changed in at least one cell line (p<0.001). 

(C-F) Cell line specific network enrichment analysis of significant differen�ally expressed                 
.          proteins between parental 293 cells and stable PARP1cd cell lines (p<0.001). 

G) Top: Proteins differen�ally expressed in all PARP cell lines in comparison to parental 
293 cells (p < 0.001). Bo�om: changes in NAD synthesis and consump�on related 
proteins (p < 0.001) in at least one of the PARP1cd overexpressing cell lines. 
*indicates changes with p-value above 0.001. Colors indicate the strength of the up-
(green) and down-(yellow to red)regula�on. 

mP - 293 mitoPARP1cd, pP – 293 pexPARP1cd, cP – 293 cytoPARP1cd, erP – 293 
erPARP1cd. 
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Figure S3 
 

Ac�vity and integrity of mitochondrial respira�on in terms of oxygen consump�on 
rate (OCR), and glycolysis in terms of extracellular acidifica�on rate (ECAR) in stably 
transfected PARP1cd cell lines compared to parental 293 cells as determined by 
extracellular flux analysis. Data are presented rela�ve to parental 293 cells as mean ± 
SEM where n = 3. *p ≤ 0.05, **p ≤ 0.01, ***p ≤  0.001 (Student’s t-test).   

mP - 293 mitoPARP1cd, pP – 293 pexPARP1cd, cP – 293 cytoPARP1cd, erP – 293 
erPARP1cd. 

Supplementary Figure 3
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Figure S4 
 

A) Exemplary fragment-ion spectra of NAD+ and the NAD+ isotopologs NAD+ M+6 and 
NAD+ M+11 as generated by MS-MS analysis from 293 cell extracts a�er 13.2 h of 
incuba�on with isotopically labelled nico�namide (15N) and glucose (13C). 

B) Time-dependent appearance of labelled isotopologs in stably transfected 
293PARP1cd cell lines upon incuba�on in the presence of isotopically labelled 
nico�namide (15N), and glucose (13C) where n = 6. 
 

mP - 293mitoPARP1cd, pP – 293pexPARP1cd, cP – 293cytoPARP1cd, erP – 
293erPARP1cd. 
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Distribu�on of NAD labeling following 48 hours incuba�on of parental 293 cells and 
stably transfected PARP1cd cell lines in presence of NA 13C and FK866 (2mM). 
mP - 293 mitoPARP1cd, pP – 293 pexPARP1cd, cP – 293 cytoPARP1cd, erP – 293 
erPARP1cd. 

Supplementary Figure 5
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Figure S6 
 

Dose-response curve of the NAD biosensor upon permeabiliza�on by Digitonin. HeLa 
cells stably expressing the NAD biosensor or the cpVenus control in the cytosol were 
permeabilized with digitonin and exposed to varying concentra�ons of NAD+. The 
fluorescence ra�o (488/405 nm) of the NAD biosensor, as measured by flow 
cytometry, was normalized to the fluorescence ra�o (488/405 nm) of the 
corresponding cpVenus control and the values were plo�ed rela�ve to 10 μM NAD+. 
Each point represents the mean ± SD, n > 3. 
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