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Supplementary Figure 1
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Figure S1

Representative flow cytometric analysis of EGFP fluorescence intensity of parental
293 cells and stably transfected PARP1cd cell lines. Cells were gated to exclude
debris, followed by standard doublet exclusion.

mP - 293 mitoPARPlcd, pP — 293 pexPARP1cd, cP — 293 cytoPARPlcd, erP — 293
erPARP1cd.
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gene name mP cP erP pP

ASS1 0.41 0.34 0.43 0.38
SCIN 0.62 0.65 0.50 1.75
ANXA1 0.36 0.85 0.42 2.28
ECH1 0.67 0.84 0.66 1.10
H2AFY2 0.51 0.52 0.58 0.68
NAMPT 1.00* 0.75 0.83* 0.81*
NAPRT 0.50 0.58 0.80* 0.85*

Figure S2

A) PCA analysis of quantitative proteomics measurements. The graph shows the first 3
principal components, which together account for about 55% of the total variation.

B) Network enrichment analysis of proteins differentially expressed in stable PARP1cd
cell lines in comparison to parental 293 cells including all proteins that are

significantly changed in at least one cell line (p<0.001).

(C-F) Cell line specific network enrichment analysis of significant differentially expressed

proteins between parental 293 cells and stable PARP1cd cell lines (p<0.001).

G) Top: Proteins differentially expressed in all PARP cell lines in comparison to parental
293 cells (p < 0.001). Bottom: changes in NAD synthesis and consumption related
proteins (p < 0.001) in at least one of the PARPlcd overexpressing cell lines.
*indicates changes with p-value above 0.001. Colors indicate the strength of the up-
(green) and down-(yellow to red)regulation.

mP - 293 mitoPARPl1cd, pP — 293 pexPARP1cd, cP — 293 cytoPARPlcd, erP — 293

erPARP1cd.
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Figure S3

Activity and integrity of mitochondrial respiration in terms of oxygen consumption
rate (OCR), and glycolysis in terms of extracellular acidification rate (ECAR) in stably
transfected PARP1cd cell lines compared to parental 293 cells as determined by
extracellular flux analysis. Data are presented relative to parental 293 cells as mean *
SEM where n =3. *p <£0.05, **p <0.01, ***p < 0.001 (Student’s t-test).

mP - 293 mitoPARP1lcd, pP — 293 pexPARP1lcd, cP — 293 cytoPARPlcd, erP — 293
erPARP1cd.
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Figure S4

A) Exemplary fragment-ion spectra of NAD* and the NAD* isotopologs NAD* M+6 and
NAD* M+11 as generated by MS-MS analysis from 293 cell extracts after 13.2 h of
incubation with isotopically labelled nicotinamide (15N) and glucose (13C).

B) Time-dependent appearance of labelled isotopologs in stably transfected
293PARP1cd cell lines upon incubation in the presence of isotopically labelled
nicotinamide (15N), and glucose (13C) where n = 6.

mP - 293mitoPARP1cd, pP — 293pexPARPlcd, cP — 293cytoPARPlcd, erP -
293erPARP1cd.
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Distribution of NAD labeling following 48 hours incubation of parental 293 cells and
stably transfected PARP1cd cell lines in presence of NA 13C and FK866 (2mM).

mP - 293 mitoPARPlcd, pP — 293 pexPARP1cd, cP — 293 cytoPARPlcd, erP — 293

erPARP1cd.
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Figure S6

Dose-response curve of the NAD biosensor upon permeabilization by Digitonin. Hela
cells stably expressing the NAD biosensor or the cpVenus control in the cytosol were
permeabilized with digitonin and exposed to varying concentrations of NAD*. The
fluorescence ratio (488/405 nm) of the NAD biosensor, as measured by flow
cytometry, was normalized to the fluorescence ratio (488/405 nm) of the
corresponding cpVenus control and the values were plotted relative to 10 uM NAD*.
Each point represents the mean £ SD, n > 3.



