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Supplementary Material 
Analytical model 

Consider a unit cell of a monatomic mass-spring system indicated by a dashed black frame 

as shown in Fig. S1, with a mass cell m , a linear spring with stiffness k , and L  is the lattice 

constant. 

 
Fig. S1. A simple periodic spring-mass system 

 

By applying Newton’s second law of motion to this system and in the absence of an 

external force, the governing equation of motion of the thj  unit cell in this spring-mass system 

is 

 ( )1 12 0j j j jmu k u u u− ++ − − =
 (S1) 

where ju  is the displacement of the thj  unit cell.  Assuming a harmonic solution of this linear 

system given as 

 i ij t
ju Ae eκ ω−=  (S2) 

where A  is the amplitude, κ  is the wave number and i = 1−  is the imaginary unit. By 

substituting Eq. (S2) into Eq. (S1), the equation of motion becomes 

 ( )2 i i i i2 0j tm k e e Ae eκ κ κ ωω − − − + − − =   (S3) 
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For a nontrivial solution of Eq. (S3) where the amplitude 0A ≠ , we have the determinant 

of Eq. (3) being zero, which gives 

 ( )2 i i2 0m k e eκ κω −− + − − =  (S4) 

Thus, using Euler's formula i cos i sine κ κ κ± = ± , the frequency ω  is obtained as 

 ( )2 2 1 cos k
m

κ
ω

−
=  (S5) 

It is known that the natural frequency of the monatomic lattice system can be expressed 

as 1 

 
0 k mω =  (S6) 

Thus, the dimensionless frequency 0ω ωΩ =  is given by 

 ( )2 2 1 cosκΩ = −  (S7) 

where for a positive value of 2Ω  and a wave with an arbitrary wavenumber κ , ( )1 cosκ−  is 

limited within the range [ ]0,2 , that leads to the limit range for the dimensionless frequency as 

[ ]0,2Ω∈ .  Thus, the frequency of wave which is permitted to propagate in this structure cannot 

exceed 02ω . 

 
Fig. S2. Dispersion relation for the spring-mass system by sweeping wavenumber κ  from 2π−  

to 2π . 
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The dispersion relation is shown in Fig. S2.  It is observed that the dispersion relation is 

periodic with period 2π  and a stop band occurs when 2Ω >  with a passband in the range 

[ ]0,2Ω∈ .  Further details can be found in Hussein et al.2,3. 

Basic theory and mathematical framework 

For a perfectly elastic, homogenous and isotropic system, the governing equation for in-

plane wave propagation can be expressed as21 

 ( ) ( ) ( ) ( )2

2:
t

ρ
∂

∇ ⋅ ∇ =   ∂
u r

C r u r r  (S8) 

where 
, ,

i
i x y z ix=

∂
∇ =

∂∑ e  designates the vector differential operator in which ie  is the unit base 

vector, ( ), ,x y z=r  is position vector, t  is time, and ( )C r , ( )u r  and ( )ρ r  are position 

dependent fourth order elasticity tensor, displacement vector and mass density, respectively.  

Further, “ ⋅ ”, “:” are the vector dot product and double-dot product of two dyadics, respectively.  

The Floquet-Bloch periodicity condition is applied along the xyz  directions.  According to this 

theory, the solution to Eq. (S8) can be represented by 

 ( ) ( ) ( ), i tt e ω⋅ −= k r
ku r u r  (S9) 

where ( )ku r  is displacement modulation function, ω  is angular frequency and ( ), ,x y zk k k=k  

is wavevector while , ,x y zk k k  are the wavenumbers in the x y z− −  directions of the Brillouin 

reciprocal space, respectively.  Analytically, the Fourier space of Brillouin lattice vector is the 

reciprocal lattice and the base vectors of the reciprocal lattice , ,x y zk k k  can be expressed as4 

 
( )
( )

( )
( )

( )
( )

2 22
; ;y z x yx z

x y z
x y z x y z x y z

π ππ× ××
= = =

⋅ × ⋅ × ⋅ ×

e e e ee e
k k k

e e e e e e e e e
 (S10) 

where ,x ye e  and ze  are base vectors of the direct lattice vector space.  As the system is periodic 

in three directions the irreducible Brillouin zone in XM RXMRΓ Γ  is considered.  The extra 

RXMR  coordinates are responsible for the wavenumber in z-direction.  The governing 

periodicity equation becomes 

 ( ) ( ) ( )( ) ( ) ( ) ( ), ,i t i ti it e e e e tω ω⋅ + − ⋅ −⋅ ⋅+ = + = =k r a k rk a k a
k ku r a u r a u r u r  (S11) 

Further simplification of the equations leads to an eigenvalue equation of the form 

 ( )( )2 0ω− ⋅ =Φ k M U  (S12) 
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where Φ  is a stiffness matrix that is a function of k  and M  is the global mass matrix.  The 

solution of Eq. (S12) helps plot wavenumber with eigenfrequencies that results in a dispersion 

response.  Further details can be found in Muhammad et al.21. 

 

Structural optimization 

Discussion on optimized prototypes with respect to bandgap (BG) that governs the largest 

relative bandwidth is presented here.  The procedure involved and other preliminary designs 

are put forward that eventually shape the final structure.  Analytical result for the preliminary 

designs is denoted with a red dashed line.  For each design, the schematic diagram along with 

band structure, vibration modes of the bounding BG edges and finite unit cell based frequency 

response are conducted.  Referring to the experiment result reported in the main text, one can 

assume similar findings for these proposed designs.  Apart from these, the dynamic mechanical 

analysis (DMA) test for determining material loss factor is explained below. 

A schematic diagram of the proposed structure is presented in Fig. S3(a) where rigid 

cylindrical masses are supported by flexible frame assembly.  The geometric parameters 

adopted are shown at the inset.  The dispersion diagrams with normalized and general frequency 

is shown in Fig. S3(b, c) where BGs are highlighted and the widest BG with a relative 

bandwidth 129% is reported.  The mode separation and modal mass participation mechanism 

involved for BG generation is explained in the main text.  For the reader’s reference, vibration 

modes corresponding to the upper and lower bounding BG edges are shown in Fig. S3(d).  It is 

observed that for the first widest BG, the BG opening edge has complete modal mass 

participation from both rigid masses and flexural stiffness of the frame assembly.  However, 

the closing bounding edge has only local mode participation caused by flexural stiffness of the 

frame structure. 
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Fig. S3. (a) Proposed structure; (b-c) band structure with BGs for both normalized and general 

frequencies.  The irreducible Brillouin zone is shown at the inset of Fig. S3(c).  (d) 

Vibration modes at the bounding edges of BGs. 

 

To validate BG for a finite set of unit cells, a 3x3x1 set of the proposed structure is created 

and the frequency response is performed to determine the response spectrum as shown in Fig. 

S4.  Reminiscent with the main text, the response spectrum validates the band structure and 

significant vibration attenuation is observed for the BG frequencies.  Because the purpose of 
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this supplementary information is to establish structural optimization, thus an emphasis on the 

COMSOL Multiphysics simulation result is presented.  One can assume similar findings from 

FEA code ANSYS® and experiment work as explained in the main text. 

 
Fig. S4. Frequency response spectrum for the finite supercell design shown in Fig. S3(a). 

 

Further, we introduce a cube mass between the frame assembly and rigid cylindrical masses 

to make the joint stronger.  The schematic structure and geometric parameters are shown in Fig. 

S5(a).  Similarly, the dispersion response with BGs for both normalized and general frequency 

is shown in Fig. S5 (b, c).  The introduction of cube masses enhances the BG width and a wider 

first BG with relative bandwidth 130% is obtained.  The vibration modes that correspond to the 

bounding BG edges are shown in Fig. S5 (d).  The result is identical to that explained in the 

main text. 
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Fig. S5. (a) Schematic diagram for the proposed structure; (b-c) band structure with BGs for 

both normalized and general frequencies.  The irreducible Brillouin zone is shown at 

the inset of Fig. S5(c).  (d) Vibration modes at the bounding BG edges. 

 

Similarly, we construct a 3x3x1 supercell structure where a frequency response study is 

conducted.  The frequency response spectrum with BGs that validates the finding is reported in 

Fig. S6 in a dispersion plot. 
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Fig. S6. Frequency response spectrum for the finite supercell design shown in Fig. S5(a). 

 

The prior two models have identical geometric parameters except that in the latter a cube 

is embedded between the supporting frame assembly and the cylindrical mass.  Here, we reduce 

the geometric parameter for frame assembly in order to check the effect on the band structure 

and BGs.  The details of geometric parameters are shown at the inset of Fig. S7(a).  The band 

structure with highlighted BGs and vibration modes at the bounding BG edges are shown in 

Fig. S7(b-d).  Compared to Fig. S3 the relative bandwidth increases to 135%.  The enhancement 

in relative bandwidth is due to the reduction in flexural stiffness of the frame assembly that is 

connected with massive cylindrical masses.  Of course, further reduction in frame thickness 

will result in a broader BG but one should also consider manufacturing limitations and 

restrictions. 
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Fig. S7. (a) Schematic diagram for the proposed structure; (b-c) band structure with BGs for 

both normalized and general frequencies.  The irreducible Brillouin zone is shown at 

the inset of Fig. S7(c).  (d) Vibration modes at the bounding BG edges. 

 

As shown in Fig. S8, a frequency response study on the 3x3x1 supercell structure is 

performed.  An extremely wide BG identical to that highlighted in Fig. S7(b-c) is observed. 
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Fig. S8. Frequency response spectrum for the finite supercell design shown in Fig. S7(a). 

 

The size of cube is further increased as shown in Fig. S5(a) and we study its effect on the 

dispersion plot and BGs.  The proposed design along with geometric parameters is shown in 

Fig. S9(a).  As shown in Fig. S9(b-c), an increase in the cube size helps enhance a larger 

participation from modal masses that results in further widening of BG.  The relative bandwidth 

increases from 130%, as seen in Fig. S5(b-c), to 148.3%.  The vibration modes that correspond 

to bounding BG edges are shown in Fig. S9(d). 
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Fig. S9. (a) Schematic diagram for the proposed structure; (b-c) band structure with BGs for 

both normalized and general frequencies.  The irreducible Brillouin zone is shown at 

the inset of Fig. 7(c).  (d) Vibration modes at the bounding BG edges. 

 

Similarly, a 3x3x1 supercell structure is tested for the frequency response to visualize the 

vibration attenuation properties.  From Fig. S10, vibration attenuation in the BG frequency 

regions is observed. 

 
Fig. S10. Frequency response spectrum for the finite supercell design shown in Fig. S9(a). 

 

Dynamic mechanical analysis (DMA) tests 

DMA is an effective testing technique that is widely used to characterize material 

properties w.r.t frequency, time, temperature, atmosphere, stress etc.  A sinusoidal deformation 

is transmitted from a shaft on a known geometric-sized specimen.  Either the stress or strain is 

kept constant and the corresponding storage and loss modulus of material at varying 

temperature is determined.  The frequency is kept constant and/or varied and the force is 



12 

determined by stress-strain relationship.  DMA measures stiffness and damping properties and 

they are presented as modulus and tanδ .  The tanδ  is a parameter for defining material 

damping.  Because a sinusoidal force is applied, the modulus is expressed in the form of in-

phase (storage modulus) and out-of-phase (loss modulus) components.  The ratio of storage to 

loss modulus is a measure of energy dissipation per-cycle or tanδ /damping.  This parameter 

shows how well a material dissipate energy under cyclic loading as tangent of phase angle.  In 

addition, this parameter varies with the state of material, temperature and frequency.  In this 

study, the strain and frequency are kept constant and the loss and storage moduli at varying 

temperature are determined.  The testing details are as follow. 

The experiment setup is shown in Fig. S11(a) where a rectangular specimen of 35x15x5 

mm in size is mounted in a testing chamber of DMA Q800 V21.2 machine.  The 

strain/deformation is kept at 10 mµ  and a cyclic load of 1Hz is applied that tends to vibrate the 

specimen like a simply supported beam subjected to a harmonic excitation.  Based on the 

constant strain value, the apparatus shows the application of a force of 10N-12N on the 

specimen at varying temperature.  A good waveform is observed that indicates accurate reported 

result.  The result is presented in Fig. S11(b, c) and 0.06η =  corresponding to 20oC is adopted 

in the FEA models. 

 
Fig. S11. (a) DMA testing setup; (b) storage and loss modulus at varying temperature; (c) 

material loss factor η  as function of temperature.  The value adopted is 
highlighted and marked in a box. 
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