

1 **Material and methods**

2 **Mice**

3 Animal experiments were performed according to the Institut Pasteur guidelines for laboratory animals' husbandry
4 and in compliance with European regulation 2010/63 EU. All procedures were approved by the Animal Ethics
5 Committee of Institut Pasteur, authorized by the French Ministry of Research and registered under #11995-
6 201703115103592 and #14644-2018041116183944.

7 C57BL/6JRj and BALB/c mice were purchased from Janvier Labs (France) and bred at Institut Pasteur. KIE16P mice
8 expressing humanized E16P E-cadherin⁷, iFABP-hEcad mice¹⁵, *Rag2*^{-/-} mice⁴⁵, CD3ε^{-/-} mice⁴⁶, muMt^{-/-}⁴⁷, *Ccr2*^{-/-}
9 mice¹², Rosa26CreER^{T2}⁴⁸ and Rosa26iDTR⁴⁹ were bred at Institut Pasteur. *Fas*^{lpr-cg} carrying a spontaneous mutation
10 at the Fas locus⁵⁰, and Prf1 KO mice deleted for the perforin gene⁵¹ were obtained from Frederic Rieux-Lauca and
11 Fernando Sepulveda, Institut Imagine, Paris, respectively. *Cflar*^{flox/flox} (FLIP^{f/f}) mice were obtained from Richard M.
12 Pope (Northwestern University, USA)⁵², Met^{flox/flox} from Alain Eychene (Institut Curie, Paris)⁵³ and *LysMCreER*^{T2}
13 from Florian Greten (Georg Speyer Haus, Germany)⁵⁴.

14 All experiments were performed on mice between 7 and 10 weeks of age, randomly assigned to each different
15 condition. Unless stated otherwise in the figure legends, mice refer to KIE16P mice.

16 **Bacterial strains**

17 All bacterial strains used in this study are presented in Extended Data Table S. To obtain growth curves, bacteria
18 grown overnight in BHI (with chloramphenicol if needed), at 37°C and 200 rpm, were diluted 1:100 in BHI (with
19 chloramphenicol if needed), incubated at 37°C and 200 rpm, and OD₆₀₀ was measured every hour for 9 hours. Growth
20 curves were fitted using Gompertz model to compare parameters between each strain.

21 **Mutagenesis and plasmids**

22 The oligonucleotide primers and plasmids used in this study are listed in Extended Data Table 2 and 3, respectively.
23 Deletion mutants were constructed as described by Monk *et al.*⁵⁵. The flanking regions of the target genes were PCR
24 amplified. After purification, the fragments were stitched together by sequence overlap extension then cloned into the
25 pMAD shuttle vector⁵⁶. The vector was then electroporated into electrocompetent *Lm* cells. After plasmid integration
26 and excision by sequence homology, gene deletion was verified by sequencing the PCR product of the target region.

29 For *LmΔinlA* mutants, to avoid alteration of InlB expression in the operon, the *inlA* gene with flanking regions was
30 PCR amplified and cloned into pLR16-pheS plasmid⁵⁷ (kind gift from Prof. Anat Herskovits, Tel Aviv University)
31 and a point mutation was introduced via PCR in the *inlA* gene resulting in a premature stop codon. The plasmid was
32 then purified and electroporated into electrocompetent *LmΔinlA* bacteria. After plasmid integration and excision by
33 sequence homology, allele replacement was verified by sequencing the PCR product of the target region.

34 The integrative pAD backbone⁵⁸ was used to allow expression of TdTomato and GFP. First an EcoRV restriction site
35 was added in pAD between the 5'UTRhly and the ATG start codon, generating the plasmid pCMC12. TdTomato and
36 GFP sequences were codon-optimized for expression in *Lm* using Optimizer (<http://genomes.urv.es/OPTIMIZER/>),
37 synthesized by Eurofins with EcoRV and Sall flanking restriction sites and inserted in pCMC12 between EcoRV and
38 Sall sites. *inlB* sequences were amplified from EGDe (MBHL0005), CC4 (MBHL0257) and *Listeria innocua*
39 BUG1642 (MBHL0052, expressing a construct where InlB anchoring region has been replaced by the anchoring
40 domain of *S. aureus* protein A¹⁷) genomic DNAs and all were inserted in pCMC12 between EcoRV and Sall sites.
41 The β-lactamase construct was described in Quereda et al⁵⁹. All constructs were electroporated into electrocompetent
42 *Lm* cells. Integration was verified by PCR.

43

44 **Infections and bacterial enumerations**

45 Bacterial inocula were prepared by centrifugation of a bacterial culture grown in BHI, at 37°C and shaken at 200 rpm,
46 until OD₆₀₀ of 0.8 (8.10⁸ viable bacteria per mL), washed in PBS and resuspended in PBS at the appropriate dilution.
47 For oral inoculation, 0.2 mL of bacteria were mixed to 0.3 mL of PBS containing 50 mg.mL⁻¹ of CaCO₃ (Sigma) and
48 injected intragastrically via a feeding needle (ECIMED) to isoflurane-anesthetized mice. For intravenous infection,
49 0.1 mL of bacteria were injected in the tail vein using a 25G needle. For intracerebral infections, mice were
50 anesthetized in 3% isoflurane, then received 10 µl of bacterial suspension by intracranial injection using a 26G needle,
51 inserted approximately 2 mm anterior to the bregma, 1 mm laterally and 1.5 mm ventrally.

52 For immunization experiments, mice were first infected with WT or *ΔinlB* strains by oral gavage with 5.10⁷ CFU.
53 After 30 days, mice were then infected intragastrically for the second challenge with 2.10⁹ WT bacteria for 3 days.
54 At indicated times, mice were euthanized and their organs aseptically harvested. Intestine, colon and cecum were
55 incubated with gentamicin 100 µg/mL for 2 hours to eliminate extra-tissular bacteria. All organs were homogenized
56 in PBS with a tissue homogenizer (UltraTurrax T-25 basic, IKA works). Serial dilutions of the homogenate were

57 plated onto BHI agar (or ALOA for feces and intestinal content) and CFUs enumerated. CFUs are expressed per mL
58 for blood and per whole organ otherwise.

59 Competition index experiments were performed as described in Disson *et al*⁶⁰. Briefly, a 1:1 ratio of wild-type bacteria,
60 expressing TdTomato, and mutant bacteria, expressing GFP, was injected into mice, confirmed by CFUs enumeration
61 of the inoculum onto BHI agar. WT and mutant bacteria CFUs were distinguished by colonies' color onto BHI agar.
62 Competition index is calculated as the ratio of WT versus mutant CFUs in each organ. Except stated otherwise,
63 competition indexes were performed 5 days post-inoculation, a time point late enough to have consistent CNS invasion
64 and induction of adaptive immune responses but before humane endpoints were reached. Whenever the mouse strains
65 were permissive to *Lm* oral infection, intragastric inoculation was used for competition index assays.

66

67 **Drug treatments of mice**

68 All drugs used in this study and their mode of delivery are presented in Extended Data Table 4.

69

70 **RNA isolation and qRT-PCR**

71 For *in vitro* analysis, bacteria were grown in BHI at 37°C and 200 rpm until OD₆₀₀ 0.8. They were then centrifuged,
72 lysed in resuspension buffer (10% glucose, 12.5 mM Tris, 10 mM EDTA in nuclease-free water), transferred into
73 Precellys tube (Ozyme) containing 0.1 mm ceramic beads (Ozyme) and acid phenol (Sigma) and homogenized using
74 a Precellys 24 apparatus (Ozyme). Aqueous phase was transferred into a new tube containing TRIzol (Invitrogen) and
75 chloroform (Sigma), shaken and centrifuged at maximum speed at 4°C for 15 min. Aqueous phase was transferred
76 into a new tube containing chloroform, shaken and centrifuged at maximum speed at 4°C for 15 min. Aqueous phase
77 was transferred into a new tube containing 1 volume of isopropanol (Sigma) and 0.1 volume of 3M sodium acetate
78 (Sigma), incubated for at least 20 min at -20°C.

79 For *in vivo* analysis, spleens were harvested aseptically and single cells suspensions were obtained by homogenizing
80 through a 40 µm cell strainer. Cells were lysed in TRIzol and chloroform, shaken and centrifuged at maximum speed
81 at 4°C for 15 min. Aqueous phase was transferred into a new tube containing 1 volume of isopropanol, incubated for
82 at least 20 min at -20°C.

83 Both for *in vitro* and *in vivo* samples, RNAs were pelleted at maximum speed at 4°C for at least 20 min and washed
84 three times in 80% ethanol (Sigma), air-dried and dissolved in RNase-free water. Total RNA was reverse-transcribed

85 using hexameric random primers (Invitrogen) and M-MLV reverse transcriptase (Invitrogen) following
86 manufacturer's instructions. Quantification of gene expression was performed using Power SYBRTM Green PCR
87 Master Mix, a Step-One Real-Time PCR apparatus (both from Applied Biosystems) and primers listed in Extended
88 Data Table 2. Expression of *inlA* and *inlB* was normalized to that of *gyrB* and compared to EGDe using the $\Delta\Delta Ct$
89 method.

90

91 **Flow cytometry**

92 Mice were euthanized at the indicated times post-infection. Functional characterization of CD8⁺ T cells and infected
93 monocytes were performed after iv inoculation, unless stated otherwise, which allows for less intra-animal variation
94 and thus reduces the number of animals needed for experiments. Counting and characterization of infected cells were
95 performed at 4 days post-inoculation (both orally and iv), when bacteremia is the highest. For orally infected mice,
96 the bacteremia being very low even at 4 days post-inoculation, blood of 3 mice was pooled and analyzed as one
97 sample. Spleens, mesenteric lymph nodes (MLN) and blood (by cardiac puncture in heparin-coated syringe) were
98 harvested aseptically. Single cells suspensions were obtained from spleen and MLN by homogenizing through a 40
99 μ m cell strainer. After red blood cells lysis using 1 X RBC lysis buffer (eBiosciences), cells were washed in Cell
100 Staining Buffer (CSB) (BioLegend) before further processing. If required, cells were labeled using the LiveBLAzerTM
101 FRET-B/G Loading Kit with CCF2-AM (Invitrogen), a fluorescent substrate of β -lactamase that can cross the plasma
102 membrane. Presence of β -lactamase-expressing bacteria in cells induces a shift in the fluorescence emission of the
103 CCF2-AM substrate from 518 nM (green) to 447 nM (blue) upon excitation with the 405 nM laser and thus allows for
104 identification of infected cells. Cells were loaded with the CCF2-AM substrate following manufacturer's instructions
105 for 2h30 at room temperature in CSB containing 1mM probenecid (Sigma). After washing, cells were blocked using
106 CD16/32 (BioLegend) for 5 min at room temperature, washed in CSB, stained with the appropriate antibodies (listed
107 in Extended Data Table 5) for 45 min at 4°C and washed in CSB. If no intracellular staining was required, cells were
108 suspended in CSB containing CountCAL beads (Sony) for absolute counting of cells. For intracellular staining, cells
109 were fixed for 20 min at room temperature in IC fixation buffer (eBiosciences), washed three times in 1X
110 permeabilization buffer (eBiosciences), incubated with primary antibodies for 1 hour at room temperature, washed
111 and incubated with secondary antibodies for 45 min at room temperature. After washing, cells were suspended in CSB
112 containing CountCAL beads for absolute counting of cells. Cells were acquired on a Fortessa X-20 SORP apparatus

113 (BD biosciences) and analyzed using FlowJo software (TreeStar). B-cells were defined as CD45⁺ CD19⁺ CD3⁻; CD8⁺
114 T-cells as CD45⁺ CD3⁺ CD8⁺ CD19⁻; LLO-specific CD8⁺ T-cells as CD45⁺ CD3⁺ CD8⁺ LLO-pentamer⁺ CD19⁻;
115 CD4⁺ T-cells as CD45⁺ CD3⁺ CD4⁺ CD19⁻; granulocytes as CD45⁺ Ly6G⁺ CD3⁻ CD19⁻; patrolling monocytes in
116 blood as CD45⁺ CD11b⁺ CD11c⁺ CD3⁻ CD19⁻ Ly6G⁻ Ly6C⁻; inflammatory monocytes as CD45⁺ CD11b⁺ Ly6C^{high}
117 CD3⁻ CD19⁻ Ly6G⁻ CD11c⁻; macrophages in spleen as CD45⁺ CD11b⁺ CD11c⁺ CD3⁻ CD19⁻ Ly6G⁻ Ly6C⁻; dendritic
118 cells as CD45⁺ CD11c⁺ CD3⁻ CD19⁻ Ly6G⁻ Ly6C⁻; infected cells as CCF2-blue and non-infected cells as CFF2-green.
119 Number of cells are expressed per mL of blood and per spleen.

120

121 **CTL assays**

122 Infected mice were euthanized 3 days post-infection, a time point where activated CD8⁺ T cells are already present
123 but prior to cell death induced in infected monocytes. Spleens were harvested aseptically and cells prepared as
124 described above for flow cytometry, resuspended in CSB and sorted on a FACSaria III apparatus (BD Biosciences)
125 into fetal calf serum-containing tubes. Activated CD8⁺ T-cells were defined as CD45⁺ CD3⁺ CD8⁺ CD69⁺ CD19⁻,
126 infected inflammatory monocytes as CD45⁺ CD11b⁺ Ly6C^{high} CD3⁻ CD19⁻ Ly6G⁻ CD11c⁻ CCF2-blue and non-
127 infected inflammatory monocytes as CD45⁺ CD11b⁺ Ly-C^{high} CD3⁻ CD19⁻ Ly6G⁻ CD11c⁻ CCF2-green. For mock-
128 treated mice, CD8⁺ T-cells and inflammatory monocytes were sorted. After sorting, cells were washed and
129 resuspended in RPMI medium (Invitrogen) containing 10% fetal calf serum. Activated CD8⁺ T-cells and monocytes
130 (infected and non-infected), isolated from independent mice, were co-incubated at the indicated ratio for 80 minutes
131 at 37°C, washed and fixed with IC fixation buffer overnight at 4°C. After three washes in 1X permeabilization buffer,
132 cells were stained with anti-cleaved caspase-3 antibody for 1 hour at room temperature, washed and stained with
133 secondary antibody for 45 minutes at room temperature. After washing, cells were acquired on a X-20 Fortessa SORP
134 apparatus and percentage of monocytes positive for cleaved caspase-3 signal analyzed using FlowJo software.

135

136 **Half-life of infected monocytes**

137 Mice were infected intravenously with 10⁴ *Lm* CFUs. At day 2 post inoculation, single cells suspensions were obtained
138 from spleens of non-infected mice as described in the flow cytometry section. Cells were then labelled with Vybrant
139 DiD solution (Invitrogen™) for 20 minutes at 37°C, according to the manufacturer's instructions. After 3 washes in
140 DMEM-F12 medium, cells were resuspended in PBS and immediately transferred into infected mice intravenously.

141 Mice were then euthanized at indicated time points post-infection and spleens and blood samples were harvested
142 aseptically. Single cells suspensions were then prepared and loaded with the CCF2-AM substrate as described above.
143 After washing, cells were acquired on a X-20 Fortessa SORP apparatus and the percentage of infected monocytes
144 positive for Vybrant DiD signal was analyzed using FlowJo software.

145

146 **Estimation of half-life times from exponential fits**

147 Means and standard deviations of infected monocytes were estimated at each time point (0, 12, 24, 36 hour) assuming
148 they are drawn from a normal distribution. At each time point, random values calculated from the normal distribution
149 were drawn and a new decay curve was simulated. To estimate the half-life of the infected monocytes, 1000 curves
150 were simulated and fitted with an exponential decay. Non-convergent fits or those with $R^2 < 0.97$ were discarded;
151 half-life times were calculated from the remaining fits, and distributions are inferred from the [0 ; 95] percentiles. The
152 differences between half-life were assessed with a non-parametric Mood test in which the null hypothesis assumes
153 that the compared samples come from populations with the same median.

154

155 **Fas ligand treatment**

156 Infected mice were euthanized 3 days post-infection and spleens were harvested aseptically. Cells were prepared and
157 sorted in the same conditions as for CTL assays. Infected and non-infected inflammatory monocytes were sorted into
158 fetal calf serum-containing tubes. After sorting, cells were washed and resuspended in RPMI medium containing 10%
159 fetal calf serum. Cells were then treated with either HA antibody as control (Cell Signaling) or with HA antibody plus
160 recombinant mouse Fas ligand/TNFSF6 (R&D systems) for 80 minutes at 37°C. After washing, cells were fixed
161 overnight in IC fixation buffer. After three washes in 1X permeabilization buffer, cells were stained with anti-cleaved
162 caspase-3 antibody for 1 hour at room temperature, washed and stained with secondary antibody for 45 minutes at
163 room temperature. After washing, cells were acquired on a X-20 Fortessa SORP apparatus and percentage of
164 monocytes positive for cleaved caspase-3 signal analyzed using FlowJo software.

165

166

167 **Caspase 8 activity assay**

168 Mice were inoculated intravenously, treated with either BYL-719 or Capmatinib and euthanized at 3 days post-
169 infection. Single cells suspensions were prepared from spleen as described in the flow cytometry section. After CCF2-
170 AM loading, blocking with CD16/32 and staining with the appropriate antibodies, cells were incubated for 30 min at
171 37°C with Red-IETD-FMK from CaspGLOW™ Red Active Caspase-8 Staining Kit (Clinisciences), washed and
172 suspended in Wash buffer containing CountCAL beads for absolute counting of cells. Cells were immediately acquired
173 on a Fortessa X-20 SORP apparatus and analyzed using FlowJo software.

174

175 **Transfer of infected monocytes**

176 Infected KIE16P mice were euthanized 3 days post-infection and spleens were harvested aseptically. Cells were
177 prepared as described above and sorted in the same conditions as for CTL assays. Infected monocytes from 6 mice
178 were sorted into fetal calf serum-containing tubes, pooled, washed and injected into a naïve mouse treated with
179 gentamicin, corresponding to an inoculum of 10^4 live CFUs. Two days post-injection, the mouse was euthanized,
180 organs harvested aseptically and bacterial enumerated as described above.

181 *LysM-CreER*^{T2+/-} × *Rosa26-iDTR*^{+/-} and their littermates were infected intravenously with CC4-*Lm*, treated with
182 tamoxifen to allow for Cre expression, euthanized 4 days after infection and spleens harvested aseptically. Cells were
183 prepared as described above and sorted in the same conditions as for CTL assays. Infected monocytes from 3 mice
184 were sorted into fetal calf-serum containing tubes, pooled (corresponding to an inoculum of 2×10^4 live CFUs), washed
185 and injected into a naïve recipient mouse (same genotype as donor mice) treated with both diphtheria toxin and
186 gentamicin, to kill Cre-expressing monocytes and extracellular bacteria. Four days post-injection, mice were
187 euthanized, organs harvested aseptically and bacteria enumerated as described above.

188

189 **Bacterial enumeration in infected monocytes**

190 Infected mice were euthanized 4 days post-infection, when the bacteremia is the highest, and spleens and blood were
191 harvested aseptically. Cells were prepared as described above and sorted in the same conditions as described for CTL
192 assays. Monocytes were collected into fetal calf serum-containing tubes, washed and resuspended into 0.1% triton,
193 serially diluted in PBS and plated on BHI agar.

194

195 **Immunofluorescence labelling for microscopy**

196 For brain sections microscopy, mice were infected with a higher inoculum, 5.10^5 CFUs, and euthanized 2 days post-
197 iv inoculation, a time point with enough crossing events to allow analysis but without damages to the blood-brain
198 barrier. Brain hemispheres were fixed in 4% paraformaldehyde in PBS overnight at 4°C then washed in PBS,
199 embedded in 4% agarose and sectioned into 40 μ m-thick slices using a vibratome (ThermoScientific, HM 650V).

200 Slices were washed in PBS then incubated for 2 hours in blocking-permeabilization solution (10% goat serum, 4%
201 fetal calf serum and 0.4% Triton X-100 in PBS). Tissues were then labeled with the appropriate primary antibodies
202 (listed in Table S5) overnight at 4°C in mild blocking conditions (4% goat serum, 4% fetal calf serum and 0.4% Triton
203 X100 in PBS), washed in PBS, then incubated with secondary antibodies (listed in Table S5), Hoechst-3342 and
204 Phalloidin-Alexa 647 for 2 hours at room temperature. Tissues were washed in PBS and then mounted on glass slides
205 under coverslips in mounting medium (Invitrogen). The slides are let in obscurity overnight before observation under
206 a Zeiss LM710 or LM700 microscope and acquisition with the ZEN software.

207 For monocytes microscopy, sorted monocytes were seeded on poly-D-lysine-coated 96 wells-plates, fixed in 4%
208 paraformaldehyde in PBS overnight at 4°C and then washed in PBS. Cells were then permeabilized in 0.1% Triton X-
209 100 for 10 minutes, incubated with blocking solution (5% BSA in PBS) for 30 minutes at room temperature, then
210 labeled with anti-*Lm* antibody for 1 hour at room temperature in PBS-BSA, washed in PBS, and then incubated with
211 anti-rabbit secondary antibody, Hoechst-3342 (ThermoFisher) and Phalloidin-Alexa 647 (ThermoFisher) for 1 hour
212 at room temperature. For c-Met staining, cells were incubated with anti-c-Met in mild blocking conditions (2.5% BSA,
213 0.2% Triton X-100 in PBS) overnight at 4°C, washed in PBS and incubated with anti-*Lm* overnight at 4°C. For p-Akt
214 and LAMP-1 staining, cells were labelled with primary antibodies solution (anti p-Akt or anti LAMP-1 and anti-*Lm*)
215 in mild blocking conditions (2.5% BSA, 0.2% Triton X-100 in PBS) overnight at 4°C then washed in PBS. Cells were
216 then incubated with appropriate secondary antibodies solution (see Extended Data Table 5) and Hoechst-3342 for 2h
217 at room temperature, washed in PBS and left in PBS at 4°C before observation under a Zeiss LM710 microscope and
218 acquisition with the ZEN software. For microscopy of BHI grown-bacteria, 50 μ L of the overnight culture were diluted
219 in 1 mL PBS, spun down in a microfuge for 2 minutes, fixed in 4% paraformaldehyde in PBS for 15 minutes at room
220 temperature then washed in PBS. Bacteria were then permeabilized using 0.5% Triton X100 for 10 min, washed in
221 PBS, then incubated with blocking solution (1% BSA in PBS) for 30 minutes. Next, bacteria were labelled with anti-
222 InlB primary antibody in blocking solution (1% BSA in PBS) for 1 hour at room temperature, washed 3 times in PBS,
223 then incubated with anti-rabbit secondary antibody for 1h at room temperature. After 3 washes in PBS, bacteria were

224 resuspended in Hoechst solution (dilution 1/5000 in PBS) for 15 minutes at room temperature, washed twice with PBS
225 then resuspended in 4 μ L PBS. Finally, the bacterial suspension was loaded onto a glass slide coated with 1% agarose
226 gel and a coverslip.

227

228 **Immunoblotting**

229 To assess InlB expression level, bacterial cultures at OD₆₀₀ of 0.8 were centrifuged at 3000 g for 10 minutes. Pellets
230 were then incubated with B-PERTM Complete Bacterial Protein Extraction Reagent (ThermoFisher Scientific) for 15
231 minutes at room temperature and centrifuged at 16,000 g for 20 minutes to obtain lysates.

232 Lysates were mixed with reducing sample buffer (NuPAGE, Invitrogen) for electrophoresis and subsequently
233 transferred onto a nitrocellulose membrane. Membranes were then blocked with 5% non fat milk diluted in PBS Tween
234 0.1 % for 1 hour and incubated with primary antibodies in blocking solution for 2 hours at room temperature. After 1
235 hour of secondary antibody incubation, immunodetection was performed by using a chemiluminescence kit
236 (AmershamTM ECLTM Prime, GE Healthcare), and bands were revealed using the PXi imaging system (SYNGENE).

237

238 ***In vitro* monocytes invasion assays**

239 C57BL/6JRj mice were euthanized and bone marrow was collected aseptically. Cells were washed in PBS, red blood
240 cells lysed as described in the flow cytometry section and monocytes isolated using the mouse Monocyte Isolation Kit
241 (Miltenyi Biotec) following manufacturer's instructions. Cells were incubated overnight at 37°C in RPMI + 10% fetal
242 calf serum and penicillin/streptomycin, washed in RPMI, plated in 96 wells-plate, infected with GFP-expressing *Lm*
243 at MOI 5 for 1 hour at 37°C and treated with 50 μ g/mL gentamicin for 1 hour at 37°C. For bacterial enumeration,
244 cells were washed in PBS, lysed in 0.1% triton, serially diluted in PBS and plated onto BHI agar. For flow cytometry
245 analysis, cells were washed, fixed in IC fixation buffer in presence of CountCAL beads, acquired on a X-20 Fortessa
246 SORP apparatus and analyzed using FlowJo software.

247

248 ***In vitro* Vero cells infection**

249 Vero cells were seeded on poly-D-lysine-coated 96 wells-plates in DMEM (Invitrogen) + 5% fetal calf serum and
250 penicillin/streptomycin 24 hours prior to infection. On the day of infection, cells were washed three times in DMEM
251 + 0.2% fetal calf serum and incubated in this medium for four hours. Bacteria grown in BHI at 37° and 200 rpm until

252 OD₆₀₀ 0.8 were centrifuged, washed in PBS, suspended in DMEM and added to the cells at a MOI of 50. After 1 min
253 centrifugation at 200 g, cells were incubated at 37° for the indicated times, fixed for 15 min in 4% PFA and washed
254 three times in PBS. Staining for microscopy was performed as for sorted monocytes in the above section.

255

256 Statistical analysis

257 Statistical details and number of replicates are found in the corresponding Figure legends. All statistical tests were
258 two-sided. Analyses were performed using GraphPad Prism 8 Software.

259

260 Extended references

261

262 45. Shinkai, Y. *et al.* RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate
263 V(D)J rearrangement. *Cell* **68**, 855–867 (1992).

264 46. Malissen, M. *et al.* Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene.
265 *The EMBO journal* **14**, 4641–4653 (1995).

266 47. Kitamura, D., Roes, J., Kühn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the
267 membrane exon of the immunoglobulin mu chain gene. *Nature* **350**, 423–426 (1991).

268 48. Hameyer, D. *et al.* Toxicity of ligand-dependent Cre recombinases and generation of a conditional
269 Cre deleter mouse allowing mosaic recombination in peripheral tissues. *Physiological genomics* **31**, 32–41
270 (2007).

271 49. Buch, T. *et al.* A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after
272 toxin administration. *Nature methods* **2**, 419–426 (2005).

273 50. Matsuzawa, A. *et al.* A new allele of the lpr locus, lprcg, that complements the gld gene in induction
274 of lymphadenopathy in the mouse. *The Journal of experimental medicine* **171**, 519–531 (1990).

275 51. Kägi, D. *et al.* Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-
276 deficient mice. *Nature* **369**, 31–37 (1994).

277 52. Huang, Q. Q. *et al.* FLIP: A novel regulator of macrophage differentiation and granulocyte homeostasis.
278 *Blood* **116**, 4968–4977 (2010).

279 53. Huh, C.-G. *et al.* Hepatocyte growth factor/c-met signaling pathway is required for efficient
280 liver regeneration and repair. *Proceedings of the National Academy of Sciences of the United States of
281 America* **101**, 4477–4482 (2004).

282 54. Canli, Ö. *et al.* Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis. *Cancer cell*
283 **32**, 869–883.e5 (2017).

284 55. Monk, I. R., Gahan, C. G. M. & Hill, C. Tools for functional postgenomic analysis of listeria
285 monocytogenes. *Applied and environmental microbiology* **74**, 3921–3934 (2008).

286 56. Arnaud, M., Chastanet, A. & Débarbouillé, M. New vector for efficient allelic replacement in naturally
287 nontransformable, low-GC-content, gram-positive bacteria. *Applied and environmental microbiology* **70**,
288 6887–6891 (2004).

289 57. Argov, T., Rabinovich, L., Sigal, N. & Herskovits, A. A. An Effective Counterselection System for Listeria
290 monocytogenes and Its Use To Characterize the Monocin Genomic Region of Strain 10403S. *Applied and
291 environmental microbiology* **83**, (2017).

292 58. Balestrino, D. *et al.* Single-cell techniques using chromosomally tagged fluorescent bacteria to study
293 Listeria monocytogenes infection processes. *Applied and Environmental Microbiology* **76**, 3625–3636
294 (2010).

295 59. Quereda, J. J. *et al.* A dual microscopy-based assay to assess Listeria monocytogenes cellular entry and
296 vacuolar escape. *Applied and Environmental Microbiology* **82**, 211–217 (2016).

298 60. Disson, O. *et al.* Modeling human listeriosis in natural and genetically engineered animals. *Nature Protocols*
299 4, 799–810 (2009).
300

Table S1

Strains	CLIP number	Collection number	Plasmid	Antibiotic resistance	Comment	Reference
EGDe		MBHL0005				(6)
10403S		MBHL0308				(6)
CC1	2007/00596	MBHL 0237				(6)
CC4	2009/00558	MBHL 0257				(6)
CC6	2009/01092	MBHL 0255				(6)
EGDe β -lactamase		MBHL396	pCMC11	Chloramphenicol		This study
CC1 β -lactamase	2007/00596	MBHL398	pCMC11	Chloramphenicol		This study
CC4 β -lactamase	2009/00558	MBHL400	pCMC11	Chloramphenicol		This study
CC6 β -lactamase	2009/01092	MBHL425	pCMC11	Chloramphenicol		This study
EGDe TdT ^{Tomato}		MBHL418	pCMC34	Chloramphenicol		This study
CC1 TdT ^{Tomato}	2007/00596	MBHL416	pCMC34	Chloramphenicol		This study
CC4 TdT ^{Tomato}	2009/00558	MBHL412	pCMC34	Chloramphenicol		This study
CC6 TdT ^{Tomato}	2009/01092	MBHL420	pCMC34	Chloramphenicol		This study
EGDe Δ InlB		MBHL 0489				This study
CC1 Δ InlB	2007/00596	MBHL 0490				This study
CC4 Δ InlB	2009/00558	MBHL 0491				This study
CC6 Δ InlB	2009/01092	MBHL 0492				This study
CC1 Δ InlA	2007/00596	MBHL 0493				This study
CC4 Δ InlA	2009/00558	MBHL 0494				This study
CC6 Δ InlA	2009/01092	MBHL 0495				This study
CC4 Δ InlB β -lactamase	2009/00558	MBHL439	pCMC11	Chloramphenicol		This study
CC4 Δ InlB TdT ^{Tomato}	2009/00558	MBHL475	pCMC34	Chloramphenicol		This study
EGDe Δ InlB GFP		MBHL449	pCMC44	Chloramphenicol		This study
CC1 Δ InlB GFP	2007/00596	MBHL451	pCMC44	Chloramphenicol		This study
CC4 Δ InlB GFP	2009/00558	MBHL453	pCMC44	Chloramphenicol		This study
CC6 Δ InlB GFP	2009/01092	MBHL455	pCMC44	Chloramphenicol		This study
EGDe Δ InlB + InlB full length from CC4		MBHL457	pCMC58	Chloramphenicol		This study
CC4 Δ InlB + InlB full length from CC4	2009/00558	MBHL469	pCMC58	Chloramphenicol		This study
CC4 Δ InlB + released InlB from CC4	2009/00558	MBHL471	pCMC59	Chloramphenicol		This study
CC4 Δ InlB + anchored InlB from CC4	2009/00558	MBHL473	pCMC60	Chloramphenicol		This study
EGDe Δ InlB + InlB full length from EGDe		MBHL487	pCMC61	Chloramphenicol		This study
CC4 Δ InlB + InlB full length from EGDe	2009/00558	MBHL488	pCMC61	Chloramphenicol		This study
CC4 Δ ActA β -lactamase	2009/00558	MBHL0497	pCMC11	Chloramphenicol		This study
Listeria innocua InlB anchored		MBHL 0052 (BUG1642)	p1B1			(17)
CC4 Δ InlA Δ InlB	2009/00558	MBHL0496				This study
CC1	2015/00085				Clinical strain	This study
CC1	2016/01406				Clinical strain	This study
CC1	2016/01398				Clinical strain	This study
CC1	2015/00918				Clinical strain	This study
CC1	2016/00717				Clinical strain	This study
CC1	2011/00412				Clinical strain	This study
CC1	2016/01677				Clinical strain	This study
CC1	2015/01910				Clinical strain	This study
CC1	2005/00008				Clinical strain	This study
CC4	2015/00091				Clinical strain	This study
CC4	2015/00895				Clinical strain	This study
CC4	2016/01178				Clinical strain	This study
CC4	2016/01062				Clinical strain	This study
CC4	2015/01543				Clinical strain	This study
CC4	2005/00190				Clinical strain	This study
CC4	2009/00994	MBHL 0353			Clinical strain	This study
CC4	2012/01728	MBHL 0352			Clinical strain	This study
CC4	2013/00255	MBHL 0350			Clinical strain	This study
CC4	2013/00344	MBHL 0354			Clinical strain	This study
CC6	2016/00566				Clinical strain	This study
CC6	2016/00074				Clinical strain	This study
CC6	2016/00783				Clinical strain	This study
CC6	2015/01823				Clinical strain	This study
CC6	2015/00880				Clinical strain	This study
CC6	2015/00001				Clinical strain	This study
CC6	2016/00551				Clinical strain	This study
CC6	2016/01114				Clinical strain	This study
CC6	2015/01823				Clinical strain	This study

Table S2

Oligos	sequence	Comment
CMC15	GGTTAAAAATGTAGAAGGAGAGTGTATCCATGAGTAAAGGAGAAGAACTTTCACTGG	Addition of EcoRV site in pAD to obtain pCMC12- <i>Forward</i>
CMC16	CCAGTAAAAGTTCTTCCTTACTCATGGATATCACTCTCCTACATTTTAACC	Addition of EcoRV site in pAD to obtain pCMC12- <i>Reverse</i>
CMC37	GCGCCGATATCCATGGTTCTAAAGGTGAAGAAGTTATAAGAATT	TdTomato (codon-optimized) cloning in pCMC12- <i>Forward</i>
CMC38	GCGCCGTCGACTTATTTATATAATTCCATACCATATAAGAATAATGATGAC	TdTomato (codon optimized) cloning in pCMC12- <i>Reverse</i>
CMC62	GCGCCGATATCCATGTCTAAAGGTGAAGAATTATT	GFP (codon-optimized) cloning in pCMC12- <i>Forward</i>
CMC63	GCGCCGTCGACTTATTTATATAATTCCATACCC	GFP (codon-optimized) cloning in pCMC12- <i>Reverse</i>
CMC195	GCGCGGATATCCATGAAAGAAAAGCACACCC	InlB cloning in pCMC12- <i>Forward</i>
CMC196	GCGCGGTCGACTTATTTCTGTGCCCTAAATTAG	InlB cloning in pCMC12- <i>Reverse</i>
CMC197	GCGCGGTCGACTTACGTCCCTGCTTCACTTTG	InlB without anchoring region cloning in pCMC12- <i>Reverse</i>
CMC198	GCGCGGTCGACTTATAGTCGCGACGACG	InlB with anchoring region of spA cloning in pCMC12- <i>Reverse</i>
inlA1F	ACGTGTCGACAGATAACACAATCACACCGTGT	inlA1: upstream flanking region of inlA
inlA1R	TACACTACTTATACACTCCTTTCAATAGTTAGAAACA	
inlA2F	AGTGTATATAAAGTAGTGTAAAGAGCTAGATGTGGT	inlA2: downstream flanking region of inlA
inlA2R	ACGTGGATCCTTCAAGTTGCTAAGGGCTT	
inlB1F	ACGTGTCGACACAACGACTCAAGCAGTAGACT	inlB1: upstream flanking region of inlB
inlB1R	TTTCGTAGGACTATCCTCTCCTGATTCTAGTTAT	
inlB2F	AGAGGATAGTCCTACGAAAAGCTATTCTAAA	inlB2: downstream flanking region of inlB
inlB2R	ACGTGGATCCATGCTATCCACATTGGCT	
inlAB2R	TTTCGTAGGTATACACTCCTTTCAATAGTTAGAAACA	inlA1pB2: upstream flanking region of InlA containing overlap with inlB2
inlAB2F	AGTGTATACCTACGAAAAGCTATTCTAAA	inlB2pA1: downstream flanking region of InlB containing overlap with inlA1
actA1F	GGGGTCGACTAAAGGTCCACGTACACCG	actA1: upstream flanking region of actA
actA1R	AACCGCTCCTACTACCATCATCGCACGCAT	
actA2F	TGATGGTAGTAGGAGCGGTTACAAATCATTCA	actA2: downstream flanking region of actA
actA2R	TGATGGTAGTAGGAGCGGTTACAAATCATTCA	
gyrB_F	AAGTATCTGGCGGACTTCACG	qPCR primer pair for gyrB
gyrB_R	TCACCACTGTTCAAAGCGTTG	
inlA_F	CGAAAAATCCTGTGGCACCA	qPCR primer pair for inlA
inlA_R	TTTGCAGGAAGGTGGTGTAGT	
inlB_F	AAGCACAAACCAAGAAGGAA	qPCR primer pair for inlB
inlB_R	CGGTGATAGTCTCCGCTTGT	

Table S3

Plasmids	Comment	Antibiotic resistance	Reference
pAD	chromosomally integrative plasmid	Chloramphenicol	(58)
pCMC11	pAD encoding for codon-optimized beta-lactamase anchored to Listeria cell-wall	Chloramphenicol	(59)
pCMC12	pAD modified to add an EcoRV restriction site between UTRhly and starting codon	Chloramphenicol	this study
pCMC34	pCMC12 encoding for codon-optimized TdTomato	Chloramphenicol	this study
pCMC44	pCMC12 encoding for codon-optimized GFP	Chloramphenicol	this study
pCMC58	pCMC12 encoding for full length InlB from CC4	Chloramphenicol	this study
pCMC59	pCMC12 encoding for InlB from CC4 truncated of its anchoring region	Chloramphenicol	this study
pCMC60	pCMC12 encoding for InlB from CC4 with the anchoring region of SpA	Chloramphenicol	this study
pCMC61	pCMC12 encoding for full length InlB from EGDe	Chloramphenicol	this study
pMAD		Erythromycin	(56)
pMAD-delta-inlA	pMAD+inlA1+inlA2, inlA deletion	Erythromycin	this study
pMAD-delta-inlB	pMAD+inlB1+inlB2, inlB deletion	Erythromycin	this study
pMAD-delta-inlAB	pMAD+inlA1+inlB2, inlAB deletion	Erythromycin	this study
pMAD-delta-actA	pMAD+actA1+actA2, actA deletion	Erythromycin	this study
pLR16		Chloramphenicol	(57)
pLR16-inlA-C1474T	introduce premature stop codon in inlA	Chloramphenicol	this study

Table S4

Drug	Final concentration	Delivery mode	Frequency of delivery	Vehicule	Reference	Supplier	Comments
Ciclosporin A	40 mg/kg	Intraperitoneal	Every day, starting the day prior to infection	Olive oil	Sandimmun	Novartis Pharma	
Anti-CD8 antibody	0.3 mg/mice	Intraperitoneal	3 days and 1 day prior to infection, day of infection and day 4 post-infection	PBS	BX-BE0061	Euromedex	Clone 2.43
Isotype control	0.3 mg/mice	Intraperitoneal	3 days and 1 day prior to infection, day of infection and day 4 post-infection	PBS	BX-BE0090	Euromedex	Clone LTF-2
Z-IETD-FMK	5 mg/kg	Intraperitoneal	Every 2 days, starting the day of infection	DMSO/PBS (1/20)	M3136	Euromedex	Caspase 8 inhibitor
Capmatinib	3 mg/kg	Oral	Every day, starting the day of infection	DMSO/PEG-400 (1/9)	HY-13404	CliniSciences	c-Met inhibitor
Wortmannin	1 mg/kg	Intraperitoneal	Every day, starting the day of infection	DMSO/PBS (1/4)	HY-10197	CliniSciences	Pan PI3K inhibitor
BYL-719	50 mg/kg	Oral	Every day, starting the day of infection	PEG-400	HY-15244	CliniSciences	PI3Ka inhibitor
IC87114	30 mg/kg	Oral	Twice every day, starting the day of infection	PEG-400	HY-10110	CliniSciences	PI3Kd inhibitor
Gentamicin	30 mg/kg	Intraperitoneal or intravenous	Every day, starting the day after infection	PBS	G1272	Sigma	
Tamoxifen	1 mg/kg	intraperitoneal	Every day, staring 5 days prior to infection	Corn oil	T5648	Sigma	
Diphtheria toxin	25ng/g	Intraperitoneal and intravenous	Intravenous morning of transfer and then IP at time of transfer and 2 days later	PBS	D0564	Sigma	

Table S5

Antibody target	Fluorophore	Reference	Supplier	Use
CD45	BV605	BLE103139	Ozyme	Flow cytometry
CD3	BV711 or FITC	BLE100241 or BLE100204	Ozyme	Flow cytometry
CD19	PE-Cy5	BLE115510	Ozyme	Flow cytometry
CD11b	BUV737	564443	BD Biosciences	Flow cytometry
CD11c	BV785	BLE117336	Ozyme	Flow cytometry
LY-6G	PE-Cy7 or APC-Cy7	BLE127618 or BLE 127624	Ozyme	Flow cytometry
LY-6C	PE or APC-Cy7	BLE128008 or BLE128026	Ozyme	Flow cytometry
CD8a	BUV395 or PE-Dazzle594	563786 or BLE100762	BD Biosciences or Ozyme	Flow cytometry
CD69	PE-Cy7	BLE104512	Ozyme	Flow cytometry
CD4	PerCP-Cy5-5	BLE100539	Ozyme	Flow cytometry
CD350 (NKp46)	BV650	740627	BD Biosciences	Flow cytometry
Fas/CD95	APC	BLE152604	Ozyme	Flow cytometry
LLO pentamer GYKDGGNEYI	PE	178	ProImmune	Flow cytometry
FLIP	-	13250269	ThermoFisher	Flow cytometry
Perforin	PE	BLE154306	Ozyme	Flow cytometry
Granzyme B	Pacific blue	BLE372218	Ozyme	Flow cytometry
CD127	BV421	BLE135023	Ozyme	Flow cytometry
IFNy	BV711	BLE505835	Ozyme	Flow cytometry
KLRG1	PE	BLE138408	Ozyme	Flow cytometry
Cleaved caspase-3 biotinylated	-	550557	BD Biosciences	Flow cytometry
Streptavidin	APC	BLE405243	Ozyme	Flow cytometry
CD11b	-	550282 or 13-0112	BD Biosciences	Microscopy
LY-6G	-	551459	BD Biosciences	Microscopy
LY-6C	-	Ab54223	Abeam	Microscopy
Listeria	-	294562	Denka Seiken	Microscopy
c-Met	-	AF527	R&D	Microscopy
Phospho-Akt	-	05-1003	Millipore	Microscopy
IgG Rat-Alexa Fluor A488	AF488	A11006	ThermoFisher	Microscopy
IgG Rabbit-Alexa Fluor A546	AF546	A11035	ThermoFisher	Microscopy
LAMP-1	-	553792	BD Pharmigen	Microscopy
InlB	-	(82)		Western blot
Ef-tu	-	(83)		Western blot
IgG Rabbit-Peroxidase	-	A6154	Sigma	Western blot