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1. Patient cohort 

Our patient cohort was comprised of 183 patients from Australia (n=53), Brazil (n=7) 

and South Africa (n=123) and presenting mostly with clinicopathologically confirmed 

prostate cancer. All except one Australian patient (PID 15178) treated with 

one-month-long Ozurdex therapy were treatment naïve at time of sampling. Three 

patients were unconfirmed for the cancer and confirmed for benign prostate hyperplasia 

(BPH). All men from the Southern African Prostate Cancer Study (SAPCS) were 

recruited at the time of diagnosis, and therefore tumour tissue was derived from biopsy 

core, while age and PSA levels were recorded at the time of diagnosis. Australian and 

Brazilian subjects were recruited at the time of radical prostatectomy. Their ages and 

PSA levels were also recorded at the same time. Additional selection criteria included: 

availability of fresh-frozen tissue and matched blood, self-reported ethnicity and 

country of origin, as well as availability of clinical and pathological data 

(Supplementary Table 1).  

2. Ethics 

All samples were obtained with written informed consent, as per study approval 

granted from the St. Vincent’s Human Research Ethics Committee in Australia 

(HREC), SVH/12/231, the Grupo de Pesquisa e Pós-Graduação (GPPG) Scientific 

Committee and Research Ethical Commission (IRB) approval number 20160539 in 

Brazil or the University of Pretoria Faculty of Health Sciences Research Ethics 

Committee (with US Federal wide assurance FWA00002567 and IRB00002235 

IORG0001762) approval number 43/2010 in South Africa. Samples were shipped to 

the Garvan Institute of Medical Research in accordance with institutional Material 

Transfer Agreements (MTAs), as well as additional Republic of South Africa 

Department of Health Export Permit (National Health Act 2003, J1/2/4/2 No 1/12). 

Whole genome sequencing and analysis were performed in accordance with approval 

granted by St. Vincent’s Hospital HREC SVH/15/227 and governance review 
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authorisation granted for human research at the Garvan Institute of Medical Research 

GHRP1522.  

3. Whole-genome sequencing 

DNA was extracted from tissue and matched blood using either the DNeasy blood and 

tissue kit protocol (Qiagen, Maryland) or the Bionano Prep Frozen Human Blood and 

Animal Tissue DNA isolation protocols (Bionano Genomics, San Diego document 

#30246 and #30077 for high molecular weight DNA). All samples were processed 

through a single sequencing workflow at the Kinghorn Centre for Clinical Genomics at 

the Garvan Institute of Medical Research, with country-specific samples intermixed to 

avoid batch effects. The DNA underwent 2 x 150 bp sequencing on the Illumina 

NovaSeq instrument, with 21 patients sequenced using the Illumina HiSeq X Ten 

instrument (Supplementary Table 1). 

4. Whole-genome sequencing analysis pipelines 

Tracy Chew, Cali Willet, Jue Jiang, Tingting Gong, Weerachai Jaratlerdsiri, Eva K.F. Chan, Vanessa M. 
Hayes, Rosemarie Sadsad 
 

The Sydney Informatics Hub (SIH), Core Research Facilities, University of Sydney 

developed the whole-genome sequencing analysis pipeline used in this study and 

optimised these pipelines for the University of Sydney's High Performance Computing 

cluster, Artemis, and Australia's National Computational Infrastructure (NCI), Gadi 

High Performance Computing facility.  

4.1 Quality control 

QC-tools can be used to quality check raw sequencing files. Supplementary Table 1 

shows MultiQC reports of raw sequencing reads (FASTQ format) from Kinghorn 

Centre for Clinical Genomics (KCCG), Garvan Institute of Medical Research. 

4.2 Variant discovery pipelines 
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Whole-genome sequencing data from 190 patients admitted in prostate cancer clinics 

(380 tumour and blood samples) were analysed at scale using four key pipelines 

(Supplementary Figures 1 and 2): i) data pre-processing for variant discovery, ii) 

germline short variant discovery, iii) somatic short variant discovery, and vi) structural 

variant discovery. The pipelines used either physical data chunking (Pipeline 1) or 

genomic interval chunking (Pipelines 1, 2, and 3) to divide the data for massively 

parallel processing. For jobs (Pipeline 4) where physical or interval chunking were not 

biologically valid, we implemented a parallel-by-sample approach. Key algorithms that 

consumed the most compute resources will be discussed below. 
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Supplementary Figure 1. Flowchart of pipelines 1 and 2. For each PBS (Portable Batch System) job, 
a total number of tasks and which tool to be used can be found in the job box. Input and output files for 
each process are labelled with arrows. 
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Supplementary Figure 2. Flowchart of Pipelines 3 and 4. 

4.2.1 Pipeline 1: Data pre-processing for variant discovery 

Data pre-processing for variant discovery is executed using the Fastq-to-BAM v2.0 

pipeline1. Each stage of this pipeline is described in detail here. To prepare raw reads 

from the KCCG sequencing centre for this data pre-processing step, FASTQ files 

were separated by sequencing lane, using fastqsplit 
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(https://github.com/supernifty/fastqsplit). Reads were adapter-trimmed and filtered 

using TrimGalore v0.6.5 to remove low-quality bases (<Q15), short reads (<70bp), 

and missing read pairs. We also removed sequins, the synthetic DNA spike-in 

controls added during sequencing with Anaquin v3.9.02. 

Each lane of filtered reads was aligned against human reference hg38 + alternate 

contigs using bwa v0.7.153. BWAkit and BWA-mem functions were used 

concurrently to improve mapping quality scores for the primary human reference 

genome and a list of alternative haplotypes, and therefore enable variant calling. Each 

read pair was aligned as an independent entity, where we parallelised this job by first 

splitting the FASTQ files into smaller files of 500,000 reads (Job 1.1). These read 

data are homogenous in size and each ran independently (Supplementary Figure 3). 

The scattered alignment tasks were merged with multi-threaded Sambamba v0.7.0 to 

produce one BAM per sample containing information about reads mapping to the 

human reference.  

S  

Supplementary Figure 3. Scalability of Job 1.2 alignment tested for a single blood sample 

 

For analysis-ready BAM used in the following pipelines, duplicate reads (technical 

artefacts from the sequencing process) were marked using SAMBLASTER v0.1.24, 
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and systematic error correction on the quality scores of DNA sequencing was 

performed using Base Quality Score Recalibration, GATK v4.1.2.0 (BQSR; Job 1.6). 

As per a scatter-gather method, recalibrated tables of each sample were generated on 

3,367 contigs (3,366 natural hg38 contigs and one unmapped group). The final job 

merged the scattered, recalibrated interval BAM files into an analysis-ready BAM file 

per sample with the Sambamba program. 

For the last part of Pipeline 1, contaminated and mislabelled samples were estimated 

using qSignature v0.1 (Job 1.11). In this study, six tumour samples were removed for 

their comparison scores greater than 0.2 and two patients were duplicated based on the 

average Euclidean distances of 0.025-0.038 (qSignature distances) (Supplementary 

Table 10), consistent with the contamination table described below by GATK 

CalculateContamination (Job 3.11). Quality control of analysis-ready BAM files was 

explored using QualiMap v2.2.1 (Job 1.10; Supplementary Table 1). Sequenza v2.1.2 

estimated the cellularity and ploidy of tumour samples (Job 1.12).  

4.2.2 Pipeline 2: Germline short variant discovery 

Germline short variant discovery is executed using the Germline-ShortV v1.0 

pipeline4. Each stage of this pipeline is described in detail here. Germline short variants 

including single nucleotide variants (SNV) and indels from 190 blood samples were 

identified through the four following processes (Supplementary Figure 1): i) variant 

calling; ii) consolidation; iii) joint calling; and vi) variant quality score recalibration 

(VQSR).  

The GATK HaplotypeCaller (Job 2.1) called germline variants by identifying 

nucleotide differences between the blood samples against 3,200 evenly sized intervals 

of the hg38 genome, using analysis-ready BAMs from Pipeline 1. Results were then 

merged into one variant call format (VCF) per sample with GatherVCFs (Job 2.2, 190 

tasks). The unfiltered variant data of 190 blood samples were consolidated into a 

datastore format using the GATK GenomicsDBImport (Job 2.3), making the data more 

accessible and subsequently joint genotyping with GenotypeGVCFs (Job 2.4) using 
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3,200-interval chunking for efficient execution. After concatenating all the intervals, 

the joint genotyped VCF was filtered using the GATK Variant Quality Score 

Recalibration (VQSR; Job 2.6) algorithm, which trains a Gaussian mixture model with 

the profile of known variants. Variant quality score log-odds (VQSLOD), indicating 

the possibility of being a true positive versus a false positive, were assigned for each 

variant, with the sensitivity cut-off at 99.7. The quality of filtered variants was then 

summarised using the GATK CollectVariantCallingMetrics, for a quick manual 

inspection. 

4.2.3 Pipeline 3: Somatic short variant discovery 

Somatic short variant discovery is executed using the Somatic-ShortV v1.0 pipeline5. 

Each stage of this pipeline is described in detail here. According to somatic short 

variant discovery (SNV and Indel) best practices by the BROAD Institute (GATK 

v4.1.2.0), the analysis-ready BAM files described in Section 4.2.1 were required for the 

following steps: i) creating the panel of normals (PoN), ii) conducting variant calling on 

the tumour samples, and iii) filtering away germline variants from the tumour variants 

using the PoN (Supplementary Figure 2).  

To create the PoN for a control of germline variants and recurrent technical artefacts, 

the GATK Mutect2 (Job 3.1) was run in parallel for 3,200 intervals across blood 

samples. The results were consolidated into GenomicsDB datastore format to be 

processed as one large VCF file (Job 3.3). In the variant calling process, simple somatic 

variants were identified across 3,200 intervals of the alignment of tumour-blood pairs 

using GATK Mutect2 that contrasted a variation of tumour tissue with the matched 

blood and PoN (Job 3.6).  

The variants were filtered out for misalignment, strand and orientation bias, polymerase 

slippage, germline variation, and contamination. The GATK 

LearnReadOrientationModel read the f1r2 files generated from Mutect2 on interval to 

identify and filter out erroneous variants with higher frequency in one read pair 

orientation. The contamination was estimated with GATK CalculateContamination 
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(Job 3.11), using the outputs of GATK GetPileupSummaries (Job 3.19), which 

summarised information of reads supporting known variants. The final step of filtering 

took account of all the information and evaluation from Job 3.8-3.11 using GATK 

FilterMutectCalls (Job 3.12).   

4.2.4 Pipeline 4: Structural variant discovery 

Somatic copy number alterations for each tumour were identified using CNVkit v0.9.6 

(Job 4.1; Supplementary Figure 2), separately with an average bin size of 200 and 

10,000 bp. Analysis-ready tumour BAM was analysed against a pool of blood 

references. The references were calculated for coverage from BAM read depths and 

pooled from 183 blood samples, excluding contaminated and duplicated samples and 

including previously published samples from South Africa6,7.  

Somatic structural variants (SV) were integrated results of two callers: Manta v1.6.0 

and GRIDSS v2.8.3 (Job 4.2-4.3). The two callers have different underlying algorithms 

and consistently outperform other callers compared8. Manta calls used herein were 

defined as ‘PASS’ in the VCF output. We ran GRIDSS with default options on tumour 

and normal BAM files, and the gridss_somatic_filter.R script assigned supported calls 

with ‘PASS’. High-confidence SVs in this study were defined as those passed by either 

Manta or GRIDSS filtering criteria and presented in unfiltered sets from both callers. 

We merged SV calls if their reported breakpoint positions overlapped within 500 bp 

unless otherwise noted. The annotation of merged SV types followed the conventional 

Manta definition. 

Pipeline 4 was searched against the whole genome at once for genomic rearrangements 

observed across different chromosomes. As it was not biologically valid for 

scatter-gather parallelism, we performed multithreading options available in our 

pipeline tools and applied a parallel-by-sample approach. 

4.3 Computing resources 
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Computation for the study was performed on three High-Performance Computing 

(HPC) systems (Table 1). All massively parallelised computation was performed using 

the National Computational Infrastructure (NCI) Gadi. 

Table 1. HPC resources available in this study 
 NCI Gadi University of Sydney Artemis Garvan Wolfpack 

Type Cluster High memory Cluster High memory Cluster 

Manufacturer Fujitsu Fujitsu Dell Dell Dell 

Cores 155,000 2592 7588 192 5000 

Processor Type 

  

Intel Xeon 

Cascade Lake 

Platinum 3.2GHz 

Intel Xeon 

Cascade Lake 

Platinum 2.9 GHz 

Intel Xeon 

E5-2680 2.50 

GHz  

Intel Xeon 

E7-8860 2.20 

GHz  

Intel Xeon 2.5GHz 

/AMD Interlagos 

2.6GHz 
Cores per node 48 28/32 24/32/48 24/64 28/64 

RAM per node 190GB 1TB/3TB 123GB 6TB 512GB 

Compute storage 20PB Lustre  1PB Lustre  1PB PanFS 

Job Scheduler PBS Pro PBS Pro PBS Pro PBS Pro Sun Grid Engine 

Note – GB, gigabyte; TB, terabyte 

4.4 Detailed computational resources and PBS job configurations 

Table 2. Detailed overview of computational resources and PBS job configurations for every job in 
Pipeline 1–4 (>1 KSU compute allocation). Usage for 190 patients has been extrapolated. 

Jobs  

Total 

tasks 

PBS 

jobs 

Total 

nodes  

Average 

concurrent 

tasks /job 

Average 

Walltime 

(hrs) 

Total 

KSUs  

Output 

size (TB) 

Output 

iNode (K) 

Pipeline 1         
FASTQ files - - - - - - 44 3 

Job 1.1 Split fastq 2,621 15 144 188 1.8 15.5 38.6 1102 

Job 1.2 Alignment  493,474 42 2624 461 0.3 160 57.4 5136 

Job 1.3 Merge BAMs 409 20 164 19 0.8 20.1 57.8 0.4 

Job 1.4 Mark duplicates, sort 386 13 305 30 2.9 88.2 33.1 2 

Job 1.6 BQSR recal  12,192 8 112 516 0.6 11.8 <1 12.2 

Job 1.8 BQSR apply 1,283,060 8 683 2357 1 75 72.1 27.3 

Job 1.9 Merge BAMs 752 18 300 46 0.7 34 52.4 0.8 

Job 1.10 QualiMap* 86 3 15 29 3.3 5.3 <1 1.5 

Job 1.11 qSignature* 141 5 39 28 1 4.9 <1 0.8 

Pipeline 2         
Job 2.1 HC 669,109 9 369 1,968 1.2 71.6 7.6 1216 

Job 2.3 Consolidation 3,200 22 88 43 3.4 43 3.8 694.8 

Job 2.4 Joint call  3,200 11 32 140 3.7 16.5 <1 6.4 

Pipeline 3         
Job 3.1 Mutect2 PoN 608,048 5 381 3,658 0.9 40.7 <1 1216 
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Job 3.6 Mutect2 variant call 608,184 7 270 1,541 0.5 49.7 <1 2432 

Job 3.9 Learn f1r2 model 220 5 9 40 1.6 2.4 <1 <1 

Pipeline 4         
Job 4.1 CNV* 126 12 22 12 2.8 8.4 <1 <1 

Job 4.2 Manta* 144 21 15 7 2 3.3 <1 0.6 

Job 4.3 GRIDSS* 171 174 29 1 22 60.8 <1 3.5 

Note – 1 KSU = 1,000 service units (SU of computation). Computational usage includes testing and 
re-run of failed tasks. 

* We performed some Jobs on both NCI Gadi and SIH Artemis. Here we only list computational 
resources used on NCI Gadi.  

5. Population structure analysis 

Weerachai Jaratlerdsiri, Jue Jiang, Tracy Chew, Cali Willet, Rosemarie Sadsad, Riana M.S. Bornman, 
Vanessa M. Hayes 
 

To estimate genetic ancestry within our cohort of 183 patients from different 

populations excluding contaminated and duplicated samples and including previously 

published samples from South Africa6,7, we added germline variant data from KhoeSan 

Genome Project (KSGP) and processed them all through the joint genotyping and 

VQSR described in Section 4.2.2. The KSGP consisted of 224 genomes sequenced at 

high depth (~41X coverage) and acted as in-house reference populations within Africa 

for this analysis. A total of 407 genomes were processed to keep only biallelic SNVs 

within autosomes passed after recalibrated. Using PLINK v2.009, we filtered the 

variant data based on the variant’s missing rate greater than 10%, minor allele 

frequency under 5% (singleton variants uninformative for population clustering), and 

P-values for Hardy-Weinberg Equilibrium (HWE) failed at 0.0001. The subsequent 

dataset of 7,472,833 remaining variants was used for data analysis. 

Genetic ancestry was estimated using fastSTRUCTURE v1.010. The program uses 

variational Bayesian inference for the best approximation of marginal likelihood of a 

very large variant dataset. We analysed the dataset with randomly chosen initial seeds 

and a varying number of ancestral populations ranging from K=2 to K=9. The logistic 

prior model was preferred, providing higher marginal likelihood values than that of a 
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simple model. Structure plots were visualised using Pophelper v2.2.7 in R11. The 

python script, chooseK.py predicted the number of ancestral populations that 

maximises the marginal likelihood of the fastSTRUCTURE data and the minimum 

number of populations with a cumulative ancestry contribution of at least 99.99%10.  

6. Inference of chromothripsis and chromoplexy 

Tingting Gong, Jue Jiang, Weerachai Jaratlerdsiri, Eva K.F. Chan, Vanessa M. Hayes 
 

Chromothripsis present in whole-genome data was detected using ShatterSeek v0.412. 

The program integrated both somatic SV and copy number alteration callsets from our 

183 tumours to detect better clusters of breakpoints from SVs that were interleaved or 

bridged the regions by their breakpoints instead of being nested. In this analysis, the 

somatic SVs were defined as high confidence by one of the callers described in Section 

4.2.4. Merging the SVs between callers was considered if they had matching SV types 

and their reported breakpoint positions were within five bp of each other. As guided, 

large insertions and SVs within chromosome Y were excluded. Integer copy number 

within each tumour was derived using the default threshold (-1.1, -0.25, 0.2, 0.7) 

implemented in the CNVkit described above for 200 bp binning. Any adjacent copy 

number segments with the same state were merged. High-confidence chromothripsis 

regions were reported if selection criteria were met following the program’s instruction, 

with significance cut-off at 0.20 for adjusted P-values (FDR). The Run_shatterseek.R 

script is provided for more details (https://github.com/tgong1/Code_HRPCa). 

Chromoplexic rearrangements per tumour were tested using ChainFinder v1.0.113. The 

same SV callset used for chromothripsis and segmentation data by CNVkit (Section 

4.2.4) were converted from hg38 to hg19 coordinates for each tumour (see the 

ChainFinder_input_hg19.R script for more details; 

https://github.com/tgong1/Code_HRPCa). Program parameters were set for 

sequencing data for the segmented copy number and the significance threshold at 0.05. 

Chromoplexic chains were plotted using the Circos software (http://circos.ca). 
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7. Mutational recurrence analysis 

Weerachai Jaratlerdsiri, Jue Jiang, Tingting Gong, Vanessa M. Hayes 
 

7.1 Driver mutations 

Driver mutations of prostate cancer in protein-coding genes and noncoding regulatory 

elements were identified using ActiveDriverWGS v1.0.114. The program performs 

statistical analysis of the number of small somatic mutations (SSM; SNVs and Indels) 

within a given genomic element for being significantly more mutated than adjacent 

background genomic sequences (50 kbp window). The genomic elements analysed 

were retrieved from syn5259886, PCAWG15, including coding sequences, promoters, 

5'-UTRs, 3'-UTRs, enhancers, small RNAs, lncRNAs (promoter and exon regions), and 

miRNAs (pre-miRNA, mature and promoter). The elements are based on transcripts 

described in GENCODE v19 (gc19) and a set of additional noncoding RNA transcript 

annotations. To avoid leakage of signals from known cancer drivers, missense 

mutations were excluded when analysing the noncoding regions. The analysis 

discarded hypermutated samples (30 mutations/Mb). The MutsigCV v1.4.1 software 

for exome data also ran for the mutational significance of SSMs among genic regions 

with the following adjustable covariates: expression, replication time, and chromatin 

state16. Both programs provided rather identical results of coding drivers. 

7.2 Recurrent copy number alterations (CNAs) 

Focal and arm-level CNAs inferred from segmented copy number data of 183 prostate 

tumours (10-kb binning; Job 4.1) were examined using GISTIC v2.0.2317. The median 

number of segments used in this analysis was equal to 9,880. The following parameters 

were set: t_amp=0.1, t_del=0.1, qv_thresh=0.10, cap=1.5, join_segment_size=4, 

res=0.05, gene_collapse_method=extreme, broad_len_cutoff=0.7, and 

conf_level=0.99. All deletion and amplification lesions reported with FDR <0.10 were 

annotated for genic regions using Ensembl Release 99 gene annotations 

(https://www.ensembl.org). 
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7.3 Recurrent structural variation (SV) breakpoints 

Recurrence analysis of SV breakpoints among 183 tumours was performed using 

fishHook v0.115,18, where Gamma-Poisson regression identifies statistical enrichment 

of somatic breakpoints in a given genomic interval after corrected by genomic 

covariates. A total of 48,234 breakpoints observed in our cohort (Section 4.2.4) had 

their positions converted to the GRCh37 build and counted within genic regions 

defined by GENCODE v19. We only considered one breakpoint per sample in a given 

interval. The eligible territory of the analysis excluded the 35-bp universal mask 

(um35-hs37d5.bed.gz) described by Li 19; this mask contains regions of low 

mappability and low complexity. Our optimal regression model covered 2,159.6 Mb of 

the eligible territory, spanned 57,819 hypotheses and used four covariates (out of 10 

tested), including replication timing, gene density, C content and mappability (100mer). 

Multiple hypothesis testing for the model was the false discovery rate (FDR) using the 

Benjamini–Hochberg method. 

Any breakpoints of somatic interchromosomal rearrangements significantly abundant 

outside main chromosomes or within alternate contigs were verified using optical 

genome mapping (Bionano Genomics, https://bionanogenomics.com). The technology 

allows megabase-length genome images/maps to be reconstructed and rearranged 

genomes to be visualised without loss of integrity20. High molecular weight DNA of 

two patients, 12543 and UP2360, was processed following Crumbaker, et al. 21 for 

DNA labelling and imaging, except for the non-nicking enzyme DLE-1 (BNG, Part 

#20351) used in the BNG Saphyr system. De novo assembly of single molecules into 

consensus genome maps was performed using the Bionano Access 1.5.2 software with 

the aligner RefAligner 10330.10436rel22. SVs were identified relative to the human 

reference genome, hg38 + alternate contigs, whose genome maps were 

bioinformatically deduced based on predicted DLE-1 (CTTAAG) motif sites. 

In addition, recurrent somatic juxtapositions of SV breakpoints in this study 

(2-dimensional connections between distinct genomic loci) were investigated using 
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Ginseng13 (https://github.com/walaj/ginseng). No significance was found. 

7.4 PCAWG somatic drivers 

Known driver genes in coding and noncoding regions published in PCAWG15,23,24 

were explored in our 183 tumours. Those specific to prostate cancer genes were also 

included21,25-28; 70 more driver genes were collected. Among those 1,730 drivers, 649 

were found in our cohort across the 11 genomic elements described in Section 7.1. 

Moreover, significantly recurrent breakpoints and juxtapositions spanning within 311 

genes reported in PCAWG were searched in this study15. Visualising the top 300 

cancer genes significantly mutated in Sections 7.1–7.4 was carried out using maftools 

v2.2.1029. 

7.5 Tumours with no apparent drivers 

All our 183 prostate tumours have recurrent alterations, regardless of mutational types 

(Extended Data Fig. 1c). This might be the result of our focus on African samples with 

high-risk prostate cancer. About 53 patients did not have PCAWG coding drivers 

observed (derived from hg19; Extended Data Fig. 2a), although three of them had the 

drivers if using hg38 annotation data (Supplementary Table 2). Nine patients in our 

cohort showed only recurrent CNAs, without any point mutations, indels and SV 

breakpoints detected. 

8. Prostate cancer taxonomy 

Weerachai Jaratlerdsiri, Vanessa M. Hayes 
 

8.1 Integrative clustering analysis 

For a prostate cancer taxonomy purpose, integrative clustering using iClusterPlus26,30 

was computed based on whole-genome information of 183 patients, including simple 

somatic mutations, SV breakpoints and somatic copy number alterations. We 

considered binary features of significant and known driver genes based on SSM and SV 

data to indicate the presence or absence of a driver in each sample (Section 7) and 
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generated cohort-wise segmentation data for CNA data (10-kb binning; Job 4.1). The 

SSM and SV data were normalised by gene; the CNA data chosen within 

non-redundant regions (epsilon=0.005; rmSmallseg=TRUE) were set with an adaptive 

dimension reduction. All of the data types were integrated into a single feature matrix 

for 183 patients. Bayesian information criteria (BIC) were selected for the best sparse 

model in our integrative analysis for molecular classification. Following the TCGA26, 

molecular taxonomy comprising seven groups of oncogenic drivers was also compared 

in this cohort. 

Individual consensus clustering of each whole-genome data across different tumours 

was performed, using ConsensusClusterPlus v1.50.031 in R. It evaluated a maximum of 

20 clusters, with 1,000 iterations of hierarchical clustering and 80% subsampling. 

Euclidean distance was used with Ward’s method for hierarchical clustering. The SSM 

and SV normalised data described above were run, and segmented copy number data 

from tumours for the clustering were converted to a data matrix of overlapping 

chromosomal regions comparing all the possible sample pairs using CNTools v1.42.0 

in R. 

8.2 Statistical significance of prostate cancer subtypes 

Statistical associations among diverse data types of recurrent alterations in this study 

(Sections 7.1–7.4) were evaluated against prostate cancer subtypes. Their P-values 

between subtypes and driver genes or elements were computed according to the nature 

of the data levels for each pair: categorical versus categorical (two-sided Fisher’s exact 

test) and categorical versus continuous (one-way ANOVA test). Suboptimal SSM and 

SV recurrent alterations were also tested if there were: i) observed values greater than 

expected; ii) uncorrected P-values <0.05; and iii) the number of affected patients 

greater than two. GISTIC results for all data (Section 7.2) in log2 copy number were 

associated with prostate cancer subtypes across 27,217 genes using a linear model. 

For multiple-testing bias, the P-value was adjusted for a false discovery rate (FDR) 

using the Benjamini-Hochberg correction (BH). 



 

 20 

In addition, gene-centric integration of significantly mutated genes observed above at 

any test was collated across SSM, SV and CNA alterations and verified its association 

with our prostate cancer subtypes. The integrated data applied GISTIC results of log2 

copy number per gene and sample that were then adjusted to either -0.20 or +0.20 if 

additional driver genes and recurrent SV breakpoints were present in a sample. The 

adjustment also considered regular copy number changes per gene and/or prostate 

cancer subtype if uncertain. The copy number adjustment of the integrated data at 

-0.10 or +0.10 was also tested for an association with prostate cancer subtypes for a 

comparative purpose. The adjusted log2 copy number was treated as a dependent 

variable for the ANOVA analysis. Note that the threshold at either ±0.1 or ±0.2 was 

identical for the results of genes preferentially mutated in specific tumour subtypes, 

except for one fewer gene for the latter. 

8.3 Pathway and network analysis 

The genes preferentially mutated in specific tumour subtypes mentioned above were 

used for the discovery of enriched pathways using ActivePathways v1.0.232. The 

program is an integrative method using a list of relevant genes across multiple datasets, 

including CNAs, SV, noncoding and coding drivers, and combining unadjusted 

P-values of the recurrent genes for all the datasets using Brown’s extension33. The 

merged P-value was adjusted for false discovery using Holm’s method. TCGA/ICGC 

cancer pathways were also searched among those genes, using maftools v2.6.0529 and 

reported prostate cancer pathways by Armenia, et al27. Network-based visualisations of 

the enriched pathways were further carried out in the Cytoscape software34, using the 

EnrichmentMap and AutoAnnotate against Gene Ontology (biological processes) and 

Reactome databases. 

8.4 Comparative cohorts 

8.4.1 High-risk CPGEA 

To compare molecular subtypes within Asian prostate cancer, Chinese Prostate Cancer 

Genome and Epigenome Atlas (CPGEA, PRJCA001124), which is the largest and most 
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comprehensive cancer genomics study conducted in China35, was merged and 

processed with our integrative clustering analysis (Section 8.1). SSMs and somatic SV 

breakpoints from 93 high-risk prostate tumours were included and overlapped with our 

recurrent alterations (Section 7). Instead, GISTIC results for all data in log2 copy 

number (Section 7.2) from both high-risk CPGEA and this study were merged across 

25,988 hg38-annotated genes and integrated with other data types for this analysis. 

Percent genome alteration (PGA) was calculated based on the total length of genes 

defined by the RefSeq database (UCSC GRCh38/hg38, Dec. 2013) and a cut-off at ±0.2. 

Gene-centric normalisation was performed in all the three datasets, and unsupervised 

hierarchical clustering was also run in each of them, using ConsensusClusterPlus 

v1.50.031 in R.  

8.4.2 PCAWG 

We leveraged the Pan-Cancer Analysis of Whole Genomes (PCAWG) to test tumour 

subtypes across different ethnic groups in other cancer types, using their SSM and SV 

consensus callsets and the GISTIC results for all data by gene in log2 copy number 

described above, as well as their sample demographic information36. We considered 

only cancers with patients of different primary ancestries at over 70% contribution 

(African, Asian and European): breast, liver, ovarian, and pancreatic cancers. Together 

with patients’ black and gray list excluded, this resulted in 101 breast, 254 liver, 55 

ovarian, and 218 pancreatic cancer patients. Coding drivers in PCAWG included five 

mutation types (missense, splice site, nonsense, nonstop, and start codon), four deletion 

types (in-frame, frame-shift, stop codon, and start codon), and three insertion types 

(in-frame, frame-shift, and stop codon insertions). PGA was calculated based on the 

total length of 23,956 genes defined by the RefSeq database (UCSC GRCh37/hg19, 

Feb. 2009) and a cut-off at ±0.2. Separate and integrative hierarchical clustering 

analyses to each dataset were performed as mentioned in Section 8.4.1. 

9. Mutational signature analysis 

Weerachai Jaratlerdsiri, David C. Wedge, Vanessa M. Hayes 
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9.1 SBS, DBS and ID signatures 

96 SBS (single base substitution), 78 DBS (doublet base substitution) and 83 ID (small 

indel) classes of our high-confidence SSM dataset from 183 patients (Section 4.2.3) 

were analysed for a catalogue of somatic mutational signatures using SigProfiler37,38. 

The program implements nonnegative matrix factorisation (NMF) detecting signature 

profiles and contributions of each signature to each tumour. The hierarchical de novo 

extraction of mutational signatures and their sequence context of the somatic mutations 

reported was also used for this analysis, in addition to the global COSMIC signatures 

(Catalogue of Somatic Mutations in Cancer v3.2, Mar. 2021). The following 

parameters were set: maximum_signatures=15, NMF_replicates=500, 

NMF_init=random, matrix_normalization=gmm, resample=TRUE, 

min_NMF_iterations=10000, max_NMF_iterations=1000000, 

clustering_distance=cosine, stability=0.8, opportunity_genome=GRCh38 (main 

chromosomes). 

9.2 CN signatures 

Copy number (CN) signatures and their mutational processes among 183 prostate 

tumours were identified using SigProfilerMatrixGenerator module in SigProfiler37,38. 

The module created a feature matrix of 45 CN features across all the tumours, given 

that multi-sample segmented data computed above by Sequenza (Job 1.12) were 

provided. The NMF package in R was computed and deconvoluted the 

patient-by-component sum-of-posteriors matrix into a patient-by-signature matrix and 

a signature-by-component matrix39. The NMF procedure performed 50 runs of random 

initialisations for a variety of ranks (1-15), using the Kullback-Leibler distance and 

Brunet algorithm. The final factorisation using the estimated rank and 200 runs defined 

the number of clusters to approximate the target matrix. The optimal factorisation rank 

considered a point that the cophenetic correlation coefficient started decreasing and the 
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residual sum of squares (RSS) curve presented an inflection point. Randomised data 

were also generated to confirm the lowest approximation error across multiple runs. 

9.3 SV signatures 

The patterns and signatures of structural variants across 183 tumours were studied 

according to the PCAWG’s working classification and annotation scheme for genomic 

rearrangement40. First, exact breakpoint coordinates of somatic SVs were generated 

using two SV callers (Section 4.2.4). Second, rearrangement breakpoint and copy 

number data were merged to investigate a structural and mechanistic association 

between copy number segment and rearrangement. Adjusted log2-ratio of the 

segmented data for each tumour was computed using the CNVkit calling pipeline of 

integer copy number (10,000-bp binning; Section 4.2.4), with sample-specific ploidy 

and purity estimates obtained from Sequenza (Job 1.12). Third, clustering SVs into 

clusters and their footprints was processed using ClusterSV 

(https://github.com/cancerit/ClusterSV/). The SV cluster shows several breakpoints 

occurring close together in time or genomic space, while the footprint is a genomic 

interval assumed to have undergone a complex rearrangement event. Fourth, redundant 

segment-bypassing SVs were removed if the total length of all the bypassed segments 

was less than SV insert size. Lastly, we refined those clusters and footprints and 

inspected them for their rearrangement patterns and categories. Considering WA scores 

per 1-kb loci from normal prostate epithelial cells (PrEC), replication timing for SVs 

within autosomes and chromosome X was defined as early (WA >75), mid (WA=2–75) 

and late categories (WA <20)41. Major fragile sites defined by PCAWG (n = 18) were 

also compared with our SV clusters40. We followed the steps of heuristic refinement of 

how the boundary and width of the footprints should be determined as described by Li, 

et al40. 

As per the above-mentioned classification, a feature matrix of counts per patient (across 

183 patients) of SV clusters falling into different features of SVs split by size and/or 

replication timing was created and used for the NMF analysis described above to 
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estimate an optimal factorisation rank and, therefore, the number of SV signatures in 

this cohort. 

9.4 Statistical analysis of mutational signatures 

The most enriched signatures for each mutational class (SBS, DBS, ID, CN and SV) 

within each patient were identified and associated with our PCa subtypes using linear 

regression with one-way ANOVA. Fisher’s exact test was also performed for the 

association between signature and categorical variable. Both de novo and global 

COSMIC signatures were tested for SBS, DBS and ID classes. In addition, Spearman 

correlations of mutational signatures detected in this study were analysed with each of 

our clinical data and 32 significantly mutated genes observed in pan-cancer and 

prostate cancer studies (integrated data in Section 8.2). For multiple hypothesis testing, 

P-values were corrected with the FDR method. 

10. Cancer evolution analysis 

Weerachai Jaratlerdsiri, David C. Wedge, Vanessa M. Hayes 
 

10.1 Clonal architecture analysis 

Reconstructing clonal architecture and frequency from a tumour-normal pair was 

conducted using the TitanCNA snakemake workflow v1.17.142 and PhyloWGS43. The 

TitanCNA inferred copy number architectures in clonal cell populations from our 183 

tumours. To improve accuracy, the alignment data of 183 blood samples (Section 4.2.1) 

were used as the PoN, with 10-kb window size. The optimal clonal cluster per tumour 

was selected based on the S_Dbw validity index and manual inspection of the results. 

The PhyloWGS program defines multiple subpopulations of cancerous cells based on 

variant allele frequency (VAF) of somatic mutations corrected by copy number 

frequency. The program required the optimal CNAs adjusted by purity (Sequenza; Job 

1.12) and filtered SSMs described in Section 4.2.3; we also removed any CNAs 

generated, with the total read depth of zero. This analysis also included normal copy 

number regions, so mutations spanning those regions could be merged and analysed 
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using default settings with four MCMC chains. A best tree of clonal architecture and 

frequency was chosen with the lowest normalised log-likelihood (nlgLH), but the 

highest likelihood (LLH). 

10.2 Mutation timing 

To improve a cancer timeline estimated above by variant allele frequency (Section 

10.1), physical alterations or whole-genome duplications (WGD) and the most recent 

common ancestor (MRCA) of all cancer cells in a tumour sample were marked and 

facilitated defining a major stage of tumour development on the accumulation of 

somatic mutations and CNAs, using MutationTimeR44 in R. The program follows a 

beta-binomial distribution and considers discrete values of local copy number and 

subclonal composition. Filtered SSM calls (Section 4.2.3) were required with 

information including a tumour’s reference and alternate allele counts; CNA data 

required were identical to ones used by PhyloWGS. Cellular prevalence and the 

number of SSMs per clone computed above in Section 10.1 (Supplementary Table 11) 

was provided for each male patient. Clonal frequency and tumour purity parameters 

were interchangeable in this analysis. In this study, the timing algorithm involving 

whole-genome duplication (bi-allelic gains) was mainly considered following 

Gerstung, et al44. Confidence intervals (tlo – tup) for timing estimates were calculated 

with 200 bootstraps. 

According to Gerstung, et al44, the rate of mutation acquisition prior to a patient’s age at 

the time of the study was calculated based on clonal and subclonal branch length of 

mutation burden (6 Gb for a diploid genome) derived from MutationTimeR results 

(copy number frequency and subclonal posterior probability). Per-sample CpG-to-TpG 

mutations from chromosomes 1-X (CpG>TpG; CGN or NCG) were counted for the 

analysis, as the mutations caused by spontaneous deamination of 5-methyl-cytosine to 

thymine at CpG dinucleotides have been proposed as a molecular clock. We then 

computed the median mutation rate for each prostate cancer subtype by summing all the 

scaled branch length and using a patient’s age as a denominator. 
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10.3 League model relative ordering 

League model relative ordering by aggregating the order of driver genes and CNAs 

across samples to define a probabilistic ranking of the drivers was performed using 

PhylogicNDT (https://github.com/broadinstitute/PhylogicNDT). Due to different data 

types the program required at the time of analysis, we skipped the Clustering and 

SinglePatientTiming modules in the program and created a single aggregated table 

described for the LeagueModel module. Orderings of each pair of driver genes and 

CNAs (early, late, unspecified clones and subclones) were derived from the timing of 

each driver mutation, as well as from the timing status of clonal and subclonal copy 

number segments retrieved from MutationTimeR. The table of those orderings was 

aggregated across all samples with the drivers available (n=132/183). The probability 

of the first event in a pair occurring before the second one would be either ‘0’ or ‘1’; 

otherwise, both events were ‘0’ if unknown was ‘1’. Sports statistics in the League 

model were employed to calculate the overall ranking of driver events, with the 

following parameters: n_perms=1000, n_seasons=1000, percent_subset=0.90, and 

num_games_against_each_opponent=2. 

10.4 Reconstruction of prostate cancer timelines 

Results of the MutationTimeR described in Section 10.2, which gathered per-sample 

information of both VAF of somatic mutations and marked copy number gains and 

classified them into four stages (early clonal, unspecified clonal, late clonal and 

subclonal), were combined across samples in the same tumour subtype to reconstruct 

a timeline of cancer evolution. We included only driver mutations identified in this 

study (Sections 7.1 and 7.4) and recurrent copy number overlapped with GISTIC 

results (Section 7.2), genes preferentially mutated in specific tumour subtypes 

(Section 8.2) and/or relevant copy number altered within the study by Wedge, et al28. 

The copy number was overlapped for both alteration size (>50%) and type. The driver 

genes and copy number reported were present within at least two tumours, with the 

same timing annotation. Somatic mutations among the four timing periods of the 
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MutationTimeR in our 183 tumours were then profiled for their mutational signatures 

and compositions at a time, using SigProfiler (Section 9.1). 

Mutually exclusive (OD <0.5) or co-occurring drivers (OD >2) were detected 

cohort-wise using somaticInteractions function in maftools v2.2.10, which performs 

pair-wise Fisher’s exact test for pair-wise significance29. The recurrent copy number 

by GISTIC (FDR <0.10; Section 7.2) locally overlapped with copy number changes 

through time defined by Wedge, et al28 were analysed together with the driver genes 

described above (Sections 7.1 and 7.4) across 183 patients, as well as consensus 

driver genes of additional 257 prostate cancer patients from PCAWG36 

Each cancer timeline begins at the fertilised egg, and spans up to the median age of 

the patients within each subtype44. WGD and the MRCA act as anchor points to 

separate between early and late clonal periods and between clonal and subclonal 

periods, respectively. Specific driver genes or recurrent copy number can be placed 

within each of these time frames. COSMIC signatures reported are shown on the 

timeline if they fluctuate over time, or if they contribute a substantial fraction of 

somatic mutations (at least 10% per timing period). The signature is annotated during 

the epoch of its greatest intensity.  
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