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1. Patient cohort

Our patient cohort was comprised of 183 patients from Australia (n=53), Brazil (n=7)
and South Africa (n=123) and presenting mostly with clinicopathologically confirmed
prostate cancer. All except one Australian patient (PID 15178) treated with
one-month-long Ozurdex therapy were treatment naive at time of sampling. Three
patients were unconfirmed for the cancer and confirmed for benign prostate hyperplasia
(BPH). All men from the Southern African Prostate Cancer Study (SAPCS) were
recruited at the time of diagnosis, and therefore tumour tissue was derived from biopsy
core, while age and PSA levels were recorded at the time of diagnosis. Australian and
Brazilian subjects were recruited at the time of radical prostatectomy. Their ages and
PSA levels were also recorded at the same time. Additional selection criteria included:
availability of fresh-frozen tissue and matched blood, self-reported ethnicity and
country of origin, as well as availability of clinical and pathological data

(Supplementary Table 1).
2. Ethics

All samples were obtained with written informed consent, as per study approval
granted from the St. Vincent’s Human Research Ethics Committee in Australia
(HREC), SVH/12/231, the Grupo de Pesquisa e P6s-Graduagdo (GPPG) Scientific
Committee and Research Ethical Commission (IRB) approval number 20160539 in
Brazil or the University of Pretoria Faculty of Health Sciences Research Ethics
Committee (with US Federal wide assurance FWA00002567 and IRB00002235
IORG0001762) approval number 43/2010 in South Africa. Samples were shipped to
the Garvan Institute of Medical Research in accordance with institutional Material
Transfer Agreements (MTAs), as well as additional Republic of South Africa
Department of Health Export Permit (National Health Act 2003, J1/2/4/2 No 1/12).
Whole genome sequencing and analysis were performed in accordance with approval

granted by St. Vincent’s Hospital HREC SVH/15/227 and governance review



authorisation granted for human research at the Garvan Institute of Medical Research

GHRP1522.
3. Whole-genome sequencing

DNA was extracted from tissue and matched blood using either the DNeasy blood and
tissue kit protocol (Qiagen, Maryland) or the Bionano Prep Frozen Human Blood and
Animal Tissue DNA isolation protocols (Bionano Genomics, San Diego document
#30246 and #30077 for high molecular weight DNA). All samples were processed
through a single sequencing workflow at the Kinghorn Centre for Clinical Genomics at
the Garvan Institute of Medical Research, with country-specific samples intermixed to
avoid batch effects. The DNA underwent 2 x 150 bp sequencing on the Illumina
NovaSeq instrument, with 21 patients sequenced using the Illumina HiSeq X Ten

instrument (Supplementary Table 1).

4. Whole-genome sequencing analysis pipelines

Tracy Chew, Cali Willet, Jue Jiang, Tingting Gong, Weerachai Jaratlerdsiri, Eva K.F. Chan, Vanessa M.

Hayes, Rosemarie Sadsad

The Sydney Informatics Hub (SIH), Core Research Facilities, University of Sydney
developed the whole-genome sequencing analysis pipeline used in this study and
optimised these pipelines for the University of Sydney's High Performance Computing
cluster, Artemis, and Australia's National Computational Infrastructure (NCI), Gadi

High Performance Computing facility.
4.1 Quality control

QC-tools can be used to quality check raw sequencing files. Supplementary Table 1
shows MultiQC reports of raw sequencing reads (FASTQ format) from Kinghorn

Centre for Clinical Genomics (KCCG), Garvan Institute of Medical Research.

4.2 Variant discovery pipelines



Whole-genome sequencing data from 190 patients admitted in prostate cancer clinics
(380 tumour and blood samples) were analysed at scale using four key pipelines
(Supplementary Figures 1 and 2): i) data pre-processing for variant discovery, i7)
germline short variant discovery, iii) somatic short variant discovery, and vi) structural
variant discovery. The pipelines used either physical data chunking (Pipeline 1) or
genomic interval chunking (Pipelines 1, 2, and 3) to divide the data for massively
parallel processing. For jobs (Pipeline 4) where physical or interval chunking were not
biologically valid, we implemented a parallel-by-sample approach. Key algorithms that

consumed the most compute resources will be discussed below.
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Supplementary Figure 1. Flowchart of pipelines 1 and 2. For each PBS (Portable Batch System) job,
a total number of tasks and which tool to be used can be found in the job box. Input and output files for

each process are labelled with arrows.
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Supplementary Figure 2. Flowchart of Pipelines 3 and 4.

4.2.1 Pipeline 1: Data pre-processing for variant discovery

Data pre-processing for variant discovery is executed using the Fastq-to-BAM v2.0
pipeline!. Each stage of this pipeline is described in detail here. To prepare raw reads
from the KCCG sequencing centre for this data pre-processing step, FASTQ files

were separated by sequencing lane, using fastgsplit



(https://github.com/supernifty/fastgsplit). Reads were adapter-trimmed and filtered

using TrimGalore v0.6.5 to remove low-quality bases (<Q15), short reads (<70bp),
and missing read pairs. We also removed sequins, the synthetic DNA spike-in

controls added during sequencing with Anaquin v3.9.07.

Each lane of filtered reads was aligned against human reference hg38 + alternate
contigs using bwa v0.7.15%. BWAkit and BWA-mem functions were used
concurrently to improve mapping quality scores for the primary human reference
genome and a list of alternative haplotypes, and therefore enable variant calling. Each
read pair was aligned as an independent entity, where we parallelised this job by first
splitting the FASTQ files into smaller files of 500,000 reads (Job 1.1). These read
data are homogenous in size and each ran independently (Supplementary Figure 3).
The scattered alignment tasks were merged with multi-threaded Sambamba v0.7.0 to
produce one BAM per sample containing information about reads mapping to the

human reference.
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Supplementary Figure 3. Scalability of Job 1.2 alignment tested for a single blood sample

For analysis-ready BAM used in the following pipelines, duplicate reads (technical

artefacts from the sequencing process) were marked using SAMBLASTER v0.1.24,



and systematic error correction on the quality scores of DNA sequencing was
performed using Base Quality Score Recalibration, GATK v4.1.2.0 (BQSR; Job 1.6).
As per a scatter-gather method, recalibrated tables of each sample were generated on
3,367 contigs (3,366 natural hg38 contigs and one unmapped group). The final job
merged the scattered, recalibrated interval BAM files into an analysis-ready BAM file

per sample with the Sambamba program.

For the last part of Pipeline 1, contaminated and mislabelled samples were estimated
using qSignature v0.1 (Job 1.11). In this study, six tumour samples were removed for
their comparison scores greater than 0.2 and two patients were duplicated based on the
average Euclidean distances of 0.025-0.038 (gSignature distances) (Supplementary
Table 10), consistent with the contamination table described below by GATK
CalculateContamination (Job 3.11). Quality control of analysis-ready BAM files was
explored using QualiMap v2.2.1 (Job 1.10; Supplementary Table 1). Sequenza v2.1.2

estimated the cellularity and ploidy of tumour samples (Job 1.12).
4.2.2 Pipeline 2: Germline short variant discovery

Germline short variant discovery is executed using the Germline-ShortV v1.0
pipeline*. Each stage of this pipeline is described in detail here. Germline short variants
including single nucleotide variants (SNV) and indels from 190 blood samples were
identified through the four following processes (Supplementary Figure 1): i) variant
calling; ii) consolidation; iii) joint calling; and vi) variant quality score recalibration

(VQSR).

The GATK HaplotypeCaller (Job 2.1) called germline variants by identifying
nucleotide differences between the blood samples against 3,200 evenly sized intervals
of the hg38 genome, using analysis-ready BAMs from Pipeline 1. Results were then
merged into one variant call format (VCF) per sample with GatherVCFs (Job 2.2, 190
tasks). The unfiltered variant data of 190 blood samples were consolidated into a
datastore format using the GATK GenomicsDBImport (Job 2.3), making the data more

accessible and subsequently joint genotyping with GenotypeGVCFs (Job 2.4) using
10



3,200-interval chunking for efficient execution. After concatenating all the intervals,
the joint genotyped VCF was filtered using the GATK Variant Quality Score
Recalibration (VQSR; Job 2.6) algorithm, which trains a Gaussian mixture model with
the profile of known variants. Variant quality score log-odds (VQSLOD), indicating
the possibility of being a true positive versus a false positive, were assigned for each
variant, with the sensitivity cut-off at 99.7. The quality of filtered variants was then
summarised using the GATK CollectVariantCallingMetrics, for a quick manual

inspection.
4.2.3 Pipeline 3: Somatic short variant discovery

Somatic short variant discovery is executed using the Somatic-ShortV v1.0 pipeline®.
Each stage of this pipeline is described in detail here. According to somatic short
variant discovery (SNV and Indel) best practices by the BROAD Institute (GATK
v4.1.2.0), the analysis-ready BAM files described in Section 4.2.1 were required for the
following steps: i) creating the panel of normals (PoN), ii) conducting variant calling on
the tumour samples, and iii) filtering away germline variants from the tumour variants

using the PoN (Supplementary Figure 2).

To create the PoN for a control of germline variants and recurrent technical artefacts,
the GATK Mutect2 (Job 3.1) was run in parallel for 3,200 intervals across blood
samples. The results were consolidated into GenomicsDB datastore format to be
processed as one large VCF file (Job 3.3). In the variant calling process, simple somatic
variants were identified across 3,200 intervals of the alignment of tumour-blood pairs
using GATK Mutect2 that contrasted a variation of tumour tissue with the matched

blood and PoN (Job 3.6).

The variants were filtered out for misalignment, strand and orientation bias, polymerase
slippage, germline variation, and contamination. The GATK
LearnReadOrientationModel read the f1r2 files generated from Mutect2 on interval to
identify and filter out erroneous variants with higher frequency in one read pair

orientation. The contamination was estimated with GATK CalculateContamination

11



(Job 3.11), using the outputs of GATK GetPileupSummaries (Job 3.19), which
summarised information of reads supporting known variants. The final step of filtering

took account of all the information and evaluation from Job 3.8-3.11 using GATK

FilterMutectCalls (Job 3.12).
4.2.4 Pipeline 4: Structural variant discovery

Somatic copy number alterations for each tumour were identified using CNVkit v0.9.6
(Job 4.1; Supplementary Figure 2), separately with an average bin size of 200 and
10,000 bp. Analysis-ready tumour BAM was analysed against a pool of blood
references. The references were calculated for coverage from BAM read depths and
pooled from 183 blood samples, excluding contaminated and duplicated samples and

including previously published samples from South Africa®’.

Somatic structural variants (SV) were integrated results of two callers: Manta v1.6.0
and GRIDSS v2.8.3 (Job 4.2-4.3). The two callers have different underlying algorithms
and consistently outperform other callers compared®. Manta calls used herein were
defined as ‘PASS’ in the VCF output. We ran GRIDSS with default options on tumour
and normal BAM files, and the gridss_somatic_filter.R script assigned supported calls
with ‘PASS’. High-confidence SVs in this study were defined as those passed by either
Manta or GRIDSS filtering criteria and presented in unfiltered sets from both callers.
We merged SV calls if their reported breakpoint positions overlapped within 500 bp
unless otherwise noted. The annotation of merged SV types followed the conventional

Manta definition.

Pipeline 4 was searched against the whole genome at once for genomic rearrangements
observed across different chromosomes. As it was not biologically valid for
scatter-gather parallelism, we performed multithreading options available in our

pipeline tools and applied a parallel-by-sample approach.

4.3 Computing resources

12



Computation for the study was performed on three High-Performance Computing

(HPC) systems (Table 1). All massively parallelised computation was performed using

the National Computational Infrastructure (NCI) Gadi.

Table 1. HPC resources available in this study

NCI Gadi University of Sydney Artemis Garvan Wolfpack
Type Cluster High memory Cluster High memory Cluster
Manufacturer Fujitsu Fujitsu Dell Dell Dell
Cores 155,000 2592 7588 192 5000
Processor Type Intel Xeon Intel Xeon Intel Xeon Intel Xeon Intel Xeon 2.5GHz
Cascade Lake Cascade Lake E5-2680 2.50 E7-8860 2.20 /AMD Interlagos
Platinum 3.2GHz  Platinum 2.9 GHz GHz GHz 2.6GHz
Cores per node 48 28/32 24/32/48 24/64 28/64
RAM per node 190GB 1TB/3TB 123GB 6TB 512GB
Compute storage 20PB Lustre 1PB Lustre 1PB PanFS
Job Scheduler PBS Pro PBS Pro PBS Pro PBS Pro Sun Grid Engine

Note — GB, gigabyte

; TB, terabyte

4.4 Detailed computational resources and PBS job configurations

Table 2. Detailed overview of computational resources and PBS job configurations for every job in

Pipeline 14 (>1 KSU compute allocation). Usage for 190 patients has been extrapolated.

Average Average

Total PBS Total concurrent Walltime Total Output Output
Jobs tasks jobs nodes tasks /job (hrs) KSUs size (TB) iNode (K)
Pipeline 1
FASTQ files - - - - - - 44 3
Job 1.1 Split fastq 2,621 15 144 188 1.8 15.5 38.6 1102
Job 1.2 Alignment 493,474 42 2624 461 0.3 160 57.4 5136
Job 1.3 Merge BAMs 409 20 164 19 0.8 20.1 57.8 0.4
Job 1.4 Mark duplicates, sort 386 13 305 30 29 88.2 33.1 2
Job 1.6 BQSR recal 12,192 8 112 516 0.6 11.8 <1 12.2
Job 1.8 BQSR apply 1,283,060 8 683 2357 1 75 72.1 27.3
Job 1.9 Merge BAMs 752 18 300 46 0.7 34 52.4 0.8
Job 1.10 QualiMap* 86 3 15 29 33 53 <l 1.5
Job 1.11 gSignature* 141 5 39 28 1 4.9 <1 0.8
Pipeline 2
Job 2.1 HC 669,109 9 369 1,968 1.2 71.6 7.6 1216
Job 2.3 Consolidation 3,200 22 88 43 3.4 43 3.8 694.8
Job 2.4 Joint call 3,200 11 32 140 3.7 16.5 <1 6.4
Pipeline 3
Job 3.1 Mutect2 PoN 608,048 5 381 3,658 0.9 40.7 <1 1216

13



Job 3.6 Mutect2 variant call 608,184 7 270 1,541 0.5 49.7 <1 2432

Job 3.9 Learn f1r2 model 220 5 9 40 1.6 24 <1 <1
Pipeline 4

Job 4.1 CNV* 126 12 22 12 2.8 8.4 <1 <1
Job 4.2 Manta* 144 21 15 7 2 33 <1 0.6
Job 4.3 GRIDSS* 171 174 29 1 22 60.8 <1 3.5

Note — 1 KSU = 1,000 service units (SU of computation). Computational usage includes testing and

re-run of failed tasks.

* We performed some Jobs on both NCI Gadi and SIH Artemis. Here we only list computational

resources used on NCI Gadi.
5. Population structure analysis

Weerachai Jaratlerdsiri, Jue Jiang, Tracy Chew, Cali Willet, Rosemarie Sadsad, Riana M.S. Bornman,

Vanessa M. Hayes

To estimate genetic ancestry within our cohort of 183 patients from different
populations excluding contaminated and duplicated samples and including previously
published samples from South Africa®’, we added germline variant data from KhoeSan
Genome Project (KSGP) and processed them all through the joint genotyping and
VQSR described in Section 4.2.2. The KSGP consisted of 224 genomes sequenced at
high depth (~41X coverage) and acted as in-house reference populations within Africa
for this analysis. A total of 407 genomes were processed to keep only biallelic SN'Vs
within autosomes passed after recalibrated. Using PLINK v2.00°, we filtered the
variant data based on the variant’s missing rate greater than 10%, minor allele
frequency under 5% (singleton variants uninformative for population clustering), and
P-values for Hardy-Weinberg Equilibrium (HWE) failed at 0.0001. The subsequent

dataset of 7,472,833 remaining variants was used for data analysis.

Genetic ancestry was estimated using fastSTRUCTURE v1.0'°. The program uses
variational Bayesian inference for the best approximation of marginal likelihood of a
very large variant dataset. We analysed the dataset with randomly chosen initial seeds
and a varying number of ancestral populations ranging from K=2 to K=9. The logistic

prior model was preferred, providing higher marginal likelihood values than that of a

14



simple model. Structure plots were visualised using Pophelper v2.2.7 in R!!, The
python script, chooseK.py predicted the number of ancestral populations that
maximises the marginal likelihood of the fastSTRUCTURE data and the minimum

number of populations with a cumulative ancestry contribution of at least 99.99%!°.

6. Inference of chromothripsis and chromoplexy

Tingting Gong, Jue Jiang, Weerachai Jaratlerdsiri, Eva K.F. Chan, Vanessa M. Hayes

Chromothripsis present in whole-genome data was detected using ShatterSeek v0.4!2,
The program integrated both somatic SV and copy number alteration callsets from our
183 tumours to detect better clusters of breakpoints from SVs that were interleaved or
bridged the regions by their breakpoints instead of being nested. In this analysis, the
somatic SVs were defined as high confidence by one of the callers described in Section
4.2.4. Merging the SVs between callers was considered if they had matching SV types
and their reported breakpoint positions were within five bp of each other. As guided,
large insertions and SVs within chromosome Y were excluded. Integer copy number
within each tumour was derived using the default threshold (-1.1, -0.25, 0.2, 0.7)
implemented in the CNVkit described above for 200 bp binning. Any adjacent copy
number segments with the same state were merged. High-confidence chromothripsis
regions were reported if selection criteria were met following the program’s instruction,
with significance cut-off at 0.20 for adjusted P-values (FDR). The Run_shatterseek.R

script is provided for more details (https://github.com/tgongl/Code_HRPCa).

Chromoplexic rearrangements per tumour were tested using ChainFinder v1.0.1'3. The
same SV callset used for chromothripsis and segmentation data by CNVKkit (Section
4.2.4) were converted from hg38 to hgl19 coordinates for each tumour (see the
ChainFinder_input_hg19.R script for more details;

https://github.com/tgong1/Code HRPCa). Program parameters were set for

sequencing data for the segmented copy number and the significance threshold at 0.05.

Chromoplexic chains were plotted using the Circos software (http://circos.ca).
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7. Mutational recurrence analysis

Weerachai Jaratlerdsiri, Jue Jiang, Tingting Gong, Vanessa M. Hayes

7.1 Driver mutations

Driver mutations of prostate cancer in protein-coding genes and noncoding regulatory
elements were identified using ActiveDriverWGS v1.0.1'4. The program performs
statistical analysis of the number of small somatic mutations (SSM; SNVs and Indels)
within a given genomic element for being significantly more mutated than adjacent
background genomic sequences (50 kbp window). The genomic elements analysed
were retrieved from syn5259886, PCAWG!, including coding sequences, promoters,
5'-UTRs, 3'-UTRs, enhancers, small RNAs, IncRNAs (promoter and exon regions), and
miRNAs (pre-miRNA, mature and promoter). The elements are based on transcripts
described in GENCODE v19 (gc19) and a set of additional noncoding RNA transcript
annotations. To avoid leakage of signals from known cancer drivers, missense
mutations were excluded when analysing the noncoding regions. The analysis
discarded hypermutated samples (30 mutations/Mb). The MutsigCV v1.4.1 software
for exome data also ran for the mutational significance of SSMs among genic regions
with the following adjustable covariates: expression, replication time, and chromatin

state!'6. Both programs provided rather identical results of coding drivers.
7.2 Recurrent copy number alterations (CNAs)

Focal and arm-level CNAs inferred from segmented copy number data of 183 prostate
tumours (10-kb binning; Job 4.1) were examined using GISTIC v2.0.23'7. The median
number of segments used in this analysis was equal to 9,880. The following parameters
were set: t amp=0.1, t del=0.1, qv_thresh=0.10, cap=1.5, join_segment_size=4,
res=0.05, gene_collapse method=extreme, broad len cutoff=0.7, and

conf level=0.99. All deletion and amplification lesions reported with FDR <0.10 were
annotated for genic regions using Ensembl Release 99 gene annotations

(https://www.ensembl.org).
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7.3 Recurrent structural variation (SV) breakpoints

Recurrence analysis of SV breakpoints among 183 tumours was performed using
fishHook v0.1!>!%, where Gamma-Poisson regression identifies statistical enrichment
of somatic breakpoints in a given genomic interval after corrected by genomic
covariates. A total of 48,234 breakpoints observed in our cohort (Section 4.2.4) had
their positions converted to the GRCh37 build and counted within genic regions
defined by GENCODE v19. We only considered one breakpoint per sample in a given
interval. The eligible territory of the analysis excluded the 35-bp universal mask
(um35-hs37d5.bed.gz) described by Li °; this mask contains regions of low
mappability and low complexity. Our optimal regression model covered 2,159.6 Mb of
the eligible territory, spanned 57,819 hypotheses and used four covariates (out of 10
tested), including replication timing, gene density, C content and mappability (100mer).
Multiple hypothesis testing for the model was the false discovery rate (FDR) using the

Benjamini—Hochberg method.

Any breakpoints of somatic interchromosomal rearrangements significantly abundant
outside main chromosomes or within alternate contigs were verified using optical

genome mapping (Bionano Genomics, https://bionanogenomics.com). The technology

allows megabase-length genome images/maps to be reconstructed and rearranged
genomes to be visualised without loss of integrity?°. High molecular weight DNA of
two patients, 12543 and UP2360, was processed following Crumbaker, et al. 2! for
DNA labelling and imaging, except for the non-nicking enzyme DLE-1 (BNG, Part
#20351) used in the BNG Saphyr system. De novo assembly of single molecules into
consensus genome maps was performed using the Bionano Access 1.5.2 software with
the aligner RefAligner 10330.10436rel*2. SVs were identified relative to the human
reference genome, hg38 + alternate contigs, whose genome maps were

bioinformatically deduced based on predicted DLE-1 (CTTAAG) motif sites.

In addition, recurrent somatic juxtapositions of SV breakpoints in this study

(2-dimensional connections between distinct genomic loci) were investigated using
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Ginseng'? (https://github.com/walaj/ginseng). No significance was found.

7.4 PCAWG somatic drivers

Known driver genes in coding and noncoding regions published in PCAWG!:23:24

were explored in our 183 tumours. Those specific to prostate cancer genes were also
included?!>>-2%; 70 more driver genes were collected. Among those 1,730 drivers, 649
were found in our cohort across the 11 genomic elements described in Section 7.1.
Moreover, significantly recurrent breakpoints and juxtapositions spanning within 311
genes reported in PCAWG were searched in this study!®. Visualising the top 300
cancer genes significantly mutated in Sections 7.1-7.4 was carried out using maftools

v2.2.10%.
7.5 Tumours with no apparent drivers

All our 183 prostate tumours have recurrent alterations, regardless of mutational types
(Extended Data Fig. 1c). This might be the result of our focus on African samples with
high-risk prostate cancer. About 53 patients did not have PCAWG coding drivers
observed (derived from hgl9; Extended Data Fig. 2a), although three of them had the
drivers if using hg38 annotation data (Supplementary Table 2). Nine patients in our
cohort showed only recurrent CNAs, without any point mutations, indels and SV

breakpoints detected.

8. Prostate cancer taxonomy

Weerachai Jaratlerdsiri, Vanessa M. Hayes

8.1 Integrative clustering analysis

For a prostate cancer taxonomy purpose, integrative clustering using iClusterPlus?6-°

was computed based on whole-genome information of 183 patients, including simple
somatic mutations, SV breakpoints and somatic copy number alterations. We
considered binary features of significant and known driver genes based on SSM and SV

data to indicate the presence or absence of a driver in each sample (Section 7) and
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generated cohort-wise segmentation data for CNA data (10-kb binning; Job 4.1). The
SSM and SV data were normalised by gene; the CNA data chosen within
non-redundant regions (epsilon=0.005; rmSmallseg=TRUE) were set with an adaptive
dimension reduction. All of the data types were integrated into a single feature matrix
for 183 patients. Bayesian information criteria (BIC) were selected for the best sparse
model in our integrative analysis for molecular classification. Following the TCGAZS,
molecular taxonomy comprising seven groups of oncogenic drivers was also compared

in this cohort.

Individual consensus clustering of each whole-genome data across different tumours
was performed, using ConsensusClusterPlus v1.50.03! in R. It evaluated a maximum of
20 clusters, with 1,000 iterations of hierarchical clustering and 80% subsampling.
Euclidean distance was used with Ward’s method for hierarchical clustering. The SSM
and SV normalised data described above were run, and segmented copy number data
from tumours for the clustering were converted to a data matrix of overlapping
chromosomal regions comparing all the possible sample pairs using CNTools v1.42.0

in R.
8.2 Statistical significance of prostate cancer subtypes

Statistical associations among diverse data types of recurrent alterations in this study
(Sections 7.1-7.4) were evaluated against prostate cancer subtypes. Their P-values
between subtypes and driver genes or elements were computed according to the nature
of the data levels for each pair: categorical versus categorical (two-sided Fisher’s exact
test) and categorical versus continuous (one-way ANOVA test). Suboptimal SSM and
SV recurrent alterations were also tested if there were: i) observed values greater than
expected; i7) uncorrected P-values <0.05; and ii7) the number of affected patients
greater than two. GISTIC results for all data (Section 7.2) in log> copy number were
associated with prostate cancer subtypes across 27,217 genes using a linear model.
For multiple-testing bias, the P-value was adjusted for a false discovery rate (FDR)

using the Benjamini-Hochberg correction (BH).
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In addition, gene-centric integration of significantly mutated genes observed above at
any test was collated across SSM, SV and CNA alterations and verified its association
with our prostate cancer subtypes. The integrated data applied GISTIC results of log>
copy number per gene and sample that were then adjusted to either -0.20 or +0.20 if
additional driver genes and recurrent SV breakpoints were present in a sample. The
adjustment also considered regular copy number changes per gene and/or prostate
cancer subtype if uncertain. The copy number adjustment of the integrated data at
-0.10 or +0.10 was also tested for an association with prostate cancer subtypes for a
comparative purpose. The adjusted logz copy number was treated as a dependent
variable for the ANOVA analysis. Note that the threshold at either £0.1 or 0.2 was
identical for the results of genes preferentially mutated in specific tumour subtypes,

except for one fewer gene for the latter.
8.3 Pathway and network analysis

The genes preferentially mutated in specific tumour subtypes mentioned above were
used for the discovery of enriched pathways using ActivePathways v1.0.232. The
program is an integrative method using a list of relevant genes across multiple datasets,
including CNAs, SV, noncoding and coding drivers, and combining unadjusted
P-values of the recurrent genes for all the datasets using Brown’s extension??. The
merged P-value was adjusted for false discovery using Holm’s method. TCGA/ICGC
cancer pathways were also searched among those genes, using maftools v2.6.05%° and
reported prostate cancer pathways by Armenia, et al*’. Network-based visualisations of
the enriched pathways were further carried out in the Cytoscape software®*, using the
EnrichmentMap and AutoAnnotate against Gene Ontology (biological processes) and

Reactome databases.

8.4 Comparative cohorts
8.4.1 High-risk CPGEA
To compare molecular subtypes within Asian prostate cancer, Chinese Prostate Cancer

Genome and Epigenome Atlas (CPGEA, PRJCA001124), which is the largest and most
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comprehensive cancer genomics study conducted in China®, was merged and
processed with our integrative clustering analysis (Section 8.1). SSMs and somatic SV
breakpoints from 93 high-risk prostate tumours were included and overlapped with our
recurrent alterations (Section 7). Instead, GISTIC results for all data in log, copy
number (Section 7.2) from both high-risk CPGEA and this study were merged across
25,988 hg38-annotated genes and integrated with other data types for this analysis.
Percent genome alteration (PGA) was calculated based on the total length of genes
defined by the RefSeq database (UCSC GRCh38/hg38, Dec. 2013) and a cut-off at +0.2.
Gene-centric normalisation was performed in all the three datasets, and unsupervised
hierarchical clustering was also run in each of them, using ConsensusClusterPlus

v1.50.03" in R.
8.4.2 PCAWG

We leveraged the Pan-Cancer Analysis of Whole Genomes (PCAWG) to test tumour
subtypes across different ethnic groups in other cancer types, using their SSM and SV
consensus callsets and the GISTIC results for all data by gene in logz copy number
described above, as well as their sample demographic information®. We considered
only cancers with patients of different primary ancestries at over 70% contribution
(African, Asian and European): breast, liver, ovarian, and pancreatic cancers. Together
with patients’ black and gray list excluded, this resulted in 101 breast, 254 liver, 55
ovarian, and 218 pancreatic cancer patients. Coding drivers in PCAWG included five
mutation types (missense, splice site, nonsense, nonstop, and start codon), four deletion
types (in-frame, frame-shift, stop codon, and start codon), and three insertion types
(in-frame, frame-shift, and stop codon insertions). PGA was calculated based on the
total length of 23,956 genes defined by the RefSeq database (UCSC GRCh37/hgl9,
Feb. 2009) and a cut-off at +0.2. Separate and integrative hierarchical clustering

analyses to each dataset were performed as mentioned in Section 8.4.1.

9. Mutational signature analysis

Weerachai Jaratlerdsiri, David C. Wedge, Vanessa M. Hayes
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9.1 SBS, DBS and ID signatures

96 SBS (single base substitution), 78 DBS (doublet base substitution) and 83 ID (small
indel) classes of our high-confidence SSM dataset from 183 patients (Section 4.2.3)
were analysed for a catalogue of somatic mutational signatures using SigProfiler’-8,
The program implements nonnegative matrix factorisation (NMF) detecting signature
profiles and contributions of each signature to each tumour. The hierarchical de novo
extraction of mutational signatures and their sequence context of the somatic mutations
reported was also used for this analysis, in addition to the global COSMIC signatures
(Catalogue of Somatic Mutations in Cancer v3.2, Mar. 2021). The following
parameters were set: maximum_signatures=15, NMF _replicates=500,

NMF _init=random, matrix_normalization=gmm, resample=TRUE,

min_NMF iterations=10000, max NMF iterations=1000000,

clustering_distance=cosine, stability=0.8, opportunity genome=GRCh38 (main

chromosomes).
9.2 CN signatures

Copy number (CN) signatures and their mutational processes among 183 prostate
tumours were identified using SigProfilerMatrixGenerator module in SigProfiler3”-3.
The module created a feature matrix of 45 CN features across all the tumours, given
that multi-sample segmented data computed above by Sequenza (Job 1.12) were
provided. The NMF package in R was computed and deconvoluted the
patient-by-component sum-of-posteriors matrix into a patient-by-signature matrix and
a signature-by-component matrix*°. The NMF procedure performed 50 runs of random
initialisations for a variety of ranks (1-15), using the Kullback-Leibler distance and
Brunet algorithm. The final factorisation using the estimated rank and 200 runs defined

the number of clusters to approximate the target matrix. The optimal factorisation rank

considered a point that the cophenetic correlation coefficient started decreasing and the

22



residual sum of squares (RSS) curve presented an inflection point. Randomised data

were also generated to confirm the lowest approximation error across multiple runs.
9.3 SV signatures

The patterns and signatures of structural variants across 183 tumours were studied
according to the PCAWG’s working classification and annotation scheme for genomic
rearrangement®’, First, exact breakpoint coordinates of somatic SVs were generated
using two SV callers (Section 4.2.4). Second, rearrangement breakpoint and copy
number data were merged to investigate a structural and mechanistic association
between copy number segment and rearrangement. Adjusted logy-ratio of the
segmented data for each tumour was computed using the CNVKkit calling pipeline of
integer copy number (10,000-bp binning; Section 4.2.4), with sample-specific ploidy
and purity estimates obtained from Sequenza (Job 1.12). Third, clustering SVs into
clusters and their footprints was processed using ClusterSV

(https://github.com/cancerit/ClusterSV/). The SV cluster shows several breakpoints

occurring close together in time or genomic space, while the footprint is a genomic
interval assumed to have undergone a complex rearrangement event. Fourth, redundant
segment-bypassing SVs were removed if the total length of all the bypassed segments
was less than SV insert size. Lastly, we refined those clusters and footprints and
inspected them for their rearrangement patterns and categories. Considering WA scores
per 1-kb loci from normal prostate epithelial cells (PrEC), replication timing for SVs
within autosomes and chromosome X was defined as early (WA >75), mid (WA=2-75)
and late categories (WA <20)*!. Major fragile sites defined by PCAWG (n = 18) were
also compared with our SV clusters*’. We followed the steps of heuristic refinement of
how the boundary and width of the footprints should be determined as described by Li,

et al*?,

As per the above-mentioned classification, a feature matrix of counts per patient (across
183 patients) of SV clusters falling into different features of SVs split by size and/or

replication timing was created and used for the NMF analysis described above to
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estimate an optimal factorisation rank and, therefore, the number of SV signatures in

this cohort.
9.4 Statistical analysis of mutational signatures

The most enriched signatures for each mutational class (SBS, DBS, ID, CN and SV)
within each patient were identified and associated with our PCa subtypes using linear
regression with one-way ANOVA. Fisher’s exact test was also performed for the
association between signature and categorical variable. Both de novo and global
COSMIC signatures were tested for SBS, DBS and ID classes. In addition, Spearman
correlations of mutational signatures detected in this study were analysed with each of
our clinical data and 32 significantly mutated genes observed in pan-cancer and
prostate cancer studies (integrated data in Section 8.2). For multiple hypothesis testing,

P-values were corrected with the FDR method.

10. Cancer evolution analysis

Weerachai Jaratlerdsiri, David C. Wedge, Vanessa M. Hayes

10.1 Clonal architecture analysis

Reconstructing clonal architecture and frequency from a tumour-normal pair was
conducted using the TitanCNA snakemake workflow v1.17.1%> and PhyloWGS*. The
TitanCNA inferred copy number architectures in clonal cell populations from our 183
tumours. To improve accuracy, the alignment data of 183 blood samples (Section 4.2.1)
were used as the PoN, with 10-kb window size. The optimal clonal cluster per tumour
was selected based on the S Dbw validity index and manual inspection of the results.
The PhyloWGS program defines multiple subpopulations of cancerous cells based on
variant allele frequency (VAF) of somatic mutations corrected by copy number
frequency. The program required the optimal CNAs adjusted by purity (Sequenza; Job
1.12) and filtered SSMs described in Section 4.2.3; we also removed any CNAs
generated, with the total read depth of zero. This analysis also included normal copy
number regions, so mutations spanning those regions could be merged and analysed

24



using default settings with four MCMC chains. A best tree of clonal architecture and
frequency was chosen with the lowest normalised log-likelihood (nlgLH), but the

highest likelihood (LLH).
10.2 Mutation timing

To improve a cancer timeline estimated above by variant allele frequency (Section
10.1), physical alterations or whole-genome duplications (WGD) and the most recent
common ancestor (MRCA) of all cancer cells in a tumour sample were marked and
facilitated defining a major stage of tumour development on the accumulation of
somatic mutations and CNAs, using MutationTimeR* in R. The program follows a
beta-binomial distribution and considers discrete values of local copy number and
subclonal composition. Filtered SSM calls (Section 4.2.3) were required with
information including a tumour’s reference and alternate allele counts; CNA data
required were identical to ones used by PhyloWGS. Cellular prevalence and the
number of SSMs per clone computed above in Section 10.1 (Supplementary Table 11)
was provided for each male patient. Clonal frequency and tumour purity parameters
were interchangeable in this analysis. In this study, the timing algorithm involving
whole-genome duplication (bi-allelic gains) was mainly considered following
Gerstung, et al**. Confidence intervals (¢, — #,,) for timing estimates were calculated

with 200 bootstraps.

According to Gerstung, et al**, the rate of mutation acquisition prior to a patient’s age at
the time of the study was calculated based on clonal and subclonal branch length of
mutation burden (6 Gb for a diploid genome) derived from MutationTimeR results
(copy number frequency and subclonal posterior probability). Per-sample CpG-to-TpG
mutations from chromosomes 1-X (CpG>TpG; CGN or NCG) were counted for the
analysis, as the mutations caused by spontaneous deamination of 5-methyl-cytosine to
thymine at CpG dinucleotides have been proposed as a molecular clock. We then
computed the median mutation rate for each prostate cancer subtype by summing all the

scaled branch length and using a patient’s age as a denominator.

25



10.3 League model relative ordering

League model relative ordering by aggregating the order of driver genes and CNAs

across samples to define a probabilistic ranking of the drivers was performed using

PhylogicNDT (https://github.com/broadinstitute/PhylogicNDT). Due to different data
types the program required at the time of analysis, we skipped the Clustering and
SinglePatientTiming modules in the program and created a single aggregated table
described for the LeagueModel module. Orderings of each pair of driver genes and
CNAs (early, late, unspecified clones and subclones) were derived from the timing of
each driver mutation, as well as from the timing status of clonal and subclonal copy
number segments retrieved from MutationTimeR. The table of those orderings was
aggregated across all samples with the drivers available (n=132/183). The probability
of the first event in a pair occurring before the second one would be either ‘0’ or ‘1’;
otherwise, both events were ‘0’ if unknown was ‘1°. Sports statistics in the League
model were employed to calculate the overall ranking of driver events, with the
following parameters: n_perms=1000, n_seasons=1000, percent_subset=0.90, and

num_games_against each opponent=2.
10.4 Reconstruction of prostate cancer timelines

Results of the MutationTimeR described in Section 10.2, which gathered per-sample
information of both VAF of somatic mutations and marked copy number gains and
classified them into four stages (early clonal, unspecified clonal, late clonal and
subclonal), were combined across samples in the same tumour subtype to reconstruct
a timeline of cancer evolution. We included only driver mutations identified in this
study (Sections 7.1 and 7.4) and recurrent copy number overlapped with GISTIC
results (Section 7.2), genes preferentially mutated in specific tumour subtypes
(Section 8.2) and/or relevant copy number altered within the study by Wedge, et al®®,
The copy number was overlapped for both alteration size (>50%) and type. The driver
genes and copy number reported were present within at least two tumours, with the

same timing annotation. Somatic mutations among the four timing periods of the
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MutationTimeR in our 183 tumours were then profiled for their mutational signatures

and compositions at a time, using SigProfiler (Section 9.1).

Mutually exclusive (OD <0.5) or co-occurring drivers (OD >2) were detected

cohort-wise using somaticInteractions function in maftools v2.2.10, which performs
pair-wise Fisher’s exact test for pair-wise significance?®. The recurrent copy number
by GISTIC (FDR <0.10; Section 7.2) locally overlapped with copy number changes

through time defined by Wedge, et al?®

were analysed together with the driver genes
described above (Sections 7.1 and 7.4) across 183 patients, as well as consensus

driver genes of additional 257 prostate cancer patients from PCAWG?3®

Each cancer timeline begins at the fertilised egg, and spans up to the median age of
the patients within each subtype**. WGD and the MRCA act as anchor points to
separate between early and late clonal periods and between clonal and subclonal
periods, respectively. Specific driver genes or recurrent copy number can be placed
within each of these time frames. COSMIC signatures reported are shown on the
timeline if they fluctuate over time, or if they contribute a substantial fraction of
somatic mutations (at least 10% per timing period). The signature is annotated during

the epoch of its greatest intensity.
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