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Supplementary Note S1: Fabrication procedures for the metasurface 

Sacrificial layer 1 

1. Clean silicon wafers with acetone and methanol.  2 

2. Spin coat PMMA to produce a sacrificial layer (3000 rpm, 30 s; bake at 180 °C, 30 s) 3 

Bottom PI layer 4 

3. Spin coat PI2545 (1500 rpm, 30s; bake at 110 °C, 180 s; bake at 150 °C, 180 s; vacuum bake at 260 °C, 5 

45 min; fully cure) 6 

Metal layer  7 

4. Deposit Ti/Au (10 nm/300 nm in thickness) using electron-beam evaporation. 8 

5. Define metal pattern using photoresist (S1813, 3000 rpm) and wet etching (Au/Ti etchant). 9 

Top PI layer 10 

6. Spin coat PI2545 (1500 rpm, 30s; bake at 110 °C, 180 s; bake at 150°C, 180 s; vacuum bake at 260 °C, 11 

45 min) 12 

7. Deposit Cu (50 nm) using electron beam evaporation. 13 

8. Define Cu pattern as hard mask using photoresist (S1813, 3000 rpm) and wet etching (Cu etchant). 14 

9. Dry etch of PI in reactive ion etcher (RIE) with CF3 and CF4. 15 

10. Remove the Cu hard mask using wet etching (Cu etchant). 16 

Transfer printing 17 

11. Undercut PMMA sacrificial layer in acetone. 18 

12. Transfer sample from silicon wafer to water soluble tape. 19 

13. Dissolve water soluble tape with warm water to make sample freestanding. 20 

 21 

Supplementary Note S2: Finite element analysis (FEA) 22 

S2.1 Deformation actuated by the Lorentz force 23 
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FEA was performed to simulate the deformation of the serpentine-shaped mesh structures actuated by 24 

Lorentz force. A home-made python script was combined with the commercial software ABAQUS to model 25 

the coupling of electrical current, magnetic field and structural deformation, which was not directly available 26 

in ABAQUS[S1]. The detailed process was reported in the supplementary note of a previous paper of our 27 

group[S2]. In brief, given the port voltages as boundary conditions, the distribution of electric current density 28 

was simulated by ABAQUS, transferred to the python script to calculate the distribution of the Lorentz force 29 

per unit volume, and then the force was transferred back to ABAQUS to simulate the deformation. The 30 

simulation was divided into several loading steps (typically K = 10~20), with a small portion (1/K) of the total 31 

voltages added in each step. Refined mesh with feature size smaller than 1/10 of the ribbon width ( PIb ) 32 

ensured the accuracy. The elastic modulus (E) and Poisson’s ratio (ν) were EPI = 2.5 GPa and νPI = 0.34, 33 

respectively for PI, and EAu = 78 GPa and νAu = 0.42, respectively for Au. The electrical resistivity of Au was 34 

ρAu = 2.43×10-8 mΩ.  35 

 36 

S2.2 Temperature change due to Joule heating 37 

The temperature change due to Joule heating of a single serpentine was simulated by the structure-38 

electricity-heat coupling module of ABAQUS. The geometry was imported from the deformed shape simulated 39 

by the process in Supplementary Note S2.1. The Joule heat per unit volume was calculated by ABAQUS 40 

according to the simulated electric current density. Convective heat transfer with air was applied to all external 41 

surfaces of the structure. Steady-state heat transfer analysis then gave the balanced temperature distribution. 42 

The baseline values of parameters were I = 10 mA, ρAu = 2.43×10-8 mΩ, PIb  = 100 μm, Aub / PIb  = 0.95, 43 

Auh = 0.3 μm, and the convective heat transfer coefficient with air HAir = 50 W/(m2
K). 44 

Supplementary Note S3: Analytical model and scaling law for the deformation actuated by Lorentz 45 

force 46 
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S3.1 Analytical model of a single serpentine structure 47 

Supplementary Fig. 2a shows the 2D precursor of a single serpentine structure of total length L, with two 48 

fixed ends. It consists of N semi-circular rings, connected by N-1 straight ribbons with length H. The distance 49 

between the two adjacent straight ribbons is λ = L/N (measured from the central axis, λ<<L, H). The semi-50 

circular rings at the two ends of the serpentine structure are also connected by straight ribbons (length H/2) 51 

to the bonding sites. The n-th semi-circular ring is located at nY Y=  = -L/2 + (n-1)λ. The cross-sectional width 52 

( PIb ) and thickness ( PIh ) of the semi-circular rings and straight ribbons are uniform, with the Au thickness 53 

being much smaller than PI thickness.  54 

The serpentine structure deforms into 3D when it is placed in uniform magnetic field B (along negative X- 55 

direction in Supplementary Fig. 2a) and actuated by electric current I. For the level of deformation studied in 56 

this manuscript (i.e. maximum out-of-plane displacement u/L on the order of 10%), the following 57 

simplifications can be made. The semi-circular ring undergoes only out-of-plane (Z- direction) rigid-body 58 

displacement ( )Z nu Y  with no rotation such that it remains horizontal. The straight ribbon undergoes out-of-59 

plane displacement (denoted by n  for the straight ribbon that connects the semi-circular ring n to n-1) and 60 

bending. The boundary conditions are ( ) ( )
1

1
2

n

n Z n

L
u Y

− 
 − = 

 
 , ( ) ( )11

2

n

n Z n

L
u Y −

 
 − = 

 
  and 

d
0

d 2

n L

X

  
 = 
 

 , 61 

and following force balance the internal force in Z- direction is n nP BIY= − . Based on beam theory, 62 

 ( ) ( )
3 3

1 3 3

PI PI PI PI PI PI

n
Z n Z n n

P H BIH
u Y u Y Y

E b h E b h
−− = = − , (S1) 63 

where 
3

PI PI PIE b h  is the bending rigidity with the contribution of Au layer neglected, as Au thickness (0.3 μm) 64 

is much smaller than PI thickness (~10 μm). Considering that λ<<L and the serpentine structure is fixed at 65 

two ends, the maximum out-of-plane displacement is 66 

 ( )
3 3 3 2/2 0

3 3 3/2
1PI PI PI PI PI PI PI PI PI

0 d
8

N

Z n
L

n

BIH BIH BIH L
u u Y Y Y Y

E b h E b h E b h −
=

= = = −  − =  . (S2) 67 
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In Eq. (S2), BIL is the effective Lorentz force and 

3

PI PI PI

3

E b h

H L


 may be defined as the effective rigidity of the 68 

serpentine structure, such that the displacement is proportional to the effective force divided by the effective 69 

rigidity. This analytical solution (Eq. (S2)) matches well with FEA (see Supplementary Note S2 for details), as 70 

shown in Supplementary Fig. 2b. In the FEA validation, the dots are for FEA with the baseline values of 71 

parameters being B = 0.15 T, I = 10 mA, H = 2 mm, L = 5 mm, PIE = 2.5 GPa, PIb  = 100 μm, PIh  = 7.8 μm 72 

and λ = 200 μm, and each of these 8 parameters varies independently in its representative range; the straight 73 

line corresponds to the analytical solution (Eq. (S2)) with slope being 0.125. 74 

For modest current such that the temperature change due to Joule heating is small and therefore the 75 

change in the electrical resistivity ( Au ) can be neglected, the current I is linearly proportional to the applied 76 

voltage V via 
Au Au

Au

V b h
I

HL




  (noticing that λ<<H, L). Therefore, the out-of-plane displacement is related to the 77 

voltage via 78 

 

2

Au Au

3

PI PI PI Au8

BVH Lb h
u

E b h 
= . (S3) 79 

 80 

S3.2 Scaling law for the deformation of the array of N serpentine beams structure 81 

Supplementary Fig. 9 an array of N serpentine beams (along Y-direction, labeled as SY1, SY2,…, SYN, 82 

SYN+1,…, SY2N) connected by N+1 serpentines along X-direction (labeled as SX0, SX1,…, SXN). There is no 83 

metal layer in serpentine SXi (i = 0,1,…,N) such that the electric currents in serpentine SYj and SYN+j are the 84 

same (denoted as Ij), and each of Ij can be applied independently via port voltages. Applying voltage Vj to 85 

induce electric current Ij in only two serpentines (SYj and SYN+j), dimensional analysis suggests that the 86 

effective Lorentz force is BIjL and the effective rigidity of the serpentine structure is proportional to 

3

PI PI PI

3

E b h

H L


, 87 

such that the displacement of node j (intersection of serpentine SYj and SYN+j), proportional to the effective 88 
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force divided by the effective rigidity, follows the same scaling as in Eq. (S2) and Eq. (S3), with a revised 89 

slope to account for the mechanical coupling among the serpentines, i.e. 

3 2

3

PI PI PI

j

n

BI H L
u

E b h 
  and 90 

2

Au Au

3

PI PI PI Au

n j

BH Lb h
u V

E b h 
 . When all the port voltages Vj are applied simultaneously, under the linear assumption 91 

such that the principal of linear superposition applies, the displacements nu  are still linearly dependent on 92 

port voltages jV  and the coefficients in the linear relationship scale with 
2

Au Au

3

PI PI PI Au

BH Lb h

E b h 
. 93 

 94 

S3.3 Scaling law for the deformation of the N×N structures 95 

Supplementary Fig. 10 shows a serpentine-shaped mesh structure consisting of N × (N+1) serpentines 96 

along X- direction (labeled as S1, S2,…, SN(N+1), length LS) connected by (N+1) × N serpentines along Y- 97 

direction (labeled as SN(N+1)+1, S N(N+1)+2,…, S2N(N+1) , length LS). The geometries of all the serpentines are the 98 

same. Port voltages Vj (j = 0,1,…,4N) are applied at the peripheries of the structure to induce electric currents 99 

Ii (i = 1,2,…,2N(N+1)) in the serpentines. The resistance of each serpentine is 
Au S

Au Au

L H
R

b h




  (noticing that 100 

λ<<H, LS). Given N, LS is linearly proportional to the overall size L of the structure, such that 
Au

Au Au

LH
R

b h




 . 101 

Therefore, dimensional analysis suggests that the electric currents are linearly dependent on the port 102 

voltages via  103 

 

4
Au Au

1Au

N

i ij j

j

b h
I D V

HL



 =

=  , (S4) 104 

with the dimensionless coefficients ijD  depending on the geometry. Dimensional analysis also suggests 105 

that the displacements induced by current Ii follows the same scaling as in Eq. (S2) with a revised slope to 106 

account for the mechanical coupling among the serpentines, i.e. 
3 2 3 2

S

3 3

PI PI PI PI PI PI

n i i

BH L BH L
u I I

E b h E b h 
   (given N). 107 

Therefore, under the linear assumption, the principal of linear superposition in combination with Eq. (S4), 108 
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suggests that the displacements nu  are linearly dependent on the port voltages jV  and the coefficients in 109 

the linear relationship scale with 
2

Au Au

3

PI PI PI Au

BH Lb h

E b h 
. 110 

 111 

Supplementary Note S4: Theoretical model of the temperature change due to Joule heating 112 

For a segment of Au (length δL) encapsulated in PI (temperature T; see Supplementary Fig. 2a for the 113 

cross-sectional view), the heat generated by Joule heating per unit time (power) is 
2

Au
Generate

Au Au

I L
W

b h

 
= . The 114 

convective heat transfer per unit time with air (HAir—convective heat transfer coefficient, TAir—air temperature) 115 

is ( ) ( )Loss PI Air Air2W b L H T T= − . Energy balance Generate LossW W=  leads to 116 

 
2

Au
Air

PI Au Au Air2

I
T T T

b b h H


 = − = . (S5) 117 

As before applying the electric current, temperature of the structure is the same as the air temperature, 118 

ΔT is also the temperature change due to Joule heating. This analytical solution (Eq. (S5)) is quite accurate 119 

to predict the temperature change of a single serpentine structure, as shown in Supplementary Fig. 2c. In the 120 

FEA validation, the dots are for FEA of the maximum temperature change in the serpentine, with the baseline 121 

values of parameters being I = 10 mA, ρAu = 2.43×10-8 mΩ, PIb  = 100 μm, Aub / PIb =0.95, Auh = 0.3 μm, 122 

and HAir = 50 W/(m2
K), and each of these 6 parameters varies independently in its representative range; the 123 

straight line corresponds to the analytical solution (Eq. (S5)) with slope being 0.5. 124 

For the temperature change ΔT to be smaller than a threshold ΔTUpper (i.e., the upper limit of the 125 

temperature that the material can tolerate or allowed in biomedical application), the upper limit of the electric 126 

current is 127 

 PI Au Au Air Upper

Upper

Au

2b b h H T
I I




 = . (S6) 128 

Eq. (S6), combined with Eq. (S2), gives the upper limit of the deformation of the single serpentine structure 129 

as 130 
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3 2
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PI PI PI Au

2

8

b h H TBH L
u

E h b 


 . (S7) 131 

 132 

Supplementary Note S5: Experimental characterizations of a single serpentine beam in response to 133 

electromagnetic actuation 134 

S5.1 Mechanical behaviors under electromagnetic actuation 135 

Supplementary Fig. 3a shows a schematic illustration of the experimental configuration. The static 136 

magnetic field is generated by two parallel disks of Neodymium magnets spaced apart by 55 mm, each with 137 

a surface magnetic field of ~2640 Gauss. A single-beam sample (H = 1.2 mm, λ = 190 μm, L = 11.0 mm, 62.4 138 

± 0.2 Ω in resistance) is placed at the center of the magnetic setup. A customized 3D printed magnet mounting 139 

stage can adjust the spacing between the magnets, by balancing the working space and uniformity of the 140 

magnetic field, 55 mm is chosen as the designed distance. A movable and rotatable sample stage has a fixed 141 

height that is the same as the height of the center of the magnets. Supplementary Fig. 3b, c shows the 142 

magnetic flux density in X-direction (B
X
) measured by a gaussmeter (GMHT201, Apex Magnets) across the 143 

center (O) along X-axis and Y-axis, B
X
 is ~0.224 ± 0.016 T in the center (O). In the model-driven process, a 144 

nonuniformity of the experimental magnetic field is neglected.  145 

Supplementary Fig. 4a shows a serpentine beam carrying a current density J (along Y-axis) deforms 146 

locally under the electromagnetic force, 𝑭EM =  𝑱 × 𝑩. The serpentine beam (λ << H) exhibits a linear, spring-147 

like behavior when deformed out of the sample plane under the electromagnetic actuation (Supplementary 148 

Note S2.1). A side camera (Webcams, ELP, 3840×2160-pixel resolution, 30 fps) monitors the out-of-plane 149 

deformation, after which the displacement (𝑢 ) is quantified via ImageJ 1.x pipeline. This measurement 150 

method produces a resolution of 0.005 mm and an uncertainty of ±0.015 mm. Supplementary Fig. 4b shows 151 

a representative optical side view of an actuated serpentine beam with an out-of-plane deformation (𝑢) and 152 

an unloaded irreversible deformation (𝑢′). The measured displacement increases linearly with the actuation 153 
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current I in the elastic regime, within which the electro-magneto-mechanical behavior of the beam agrees 154 

with both analytical solution and finite element analysis study (FEA, Supplementary Note S2.1). When the 155 

actuation current exceeds 27.5 mA, the measured 𝑢  deviates from the analytical prediction, and an 156 

irreversible deformation (𝑢′) is observed subsequently when unloaded (Supplementary Fig. 4c). Based on 157 

the experimental observations, the single-beam sample can deform to a maximum of 4.2 ± 0.1 mm (u/L ~38%) 158 

while remaining to be fully reversible, with a corresponding maximum current (I) of 27.5 mA (𝑱 < 7 × 108 A/m2, 159 

the cross-section area is 3.9 × 10−11 m2).  160 

 161 

S5.2 Thermal behaviors under electromagnetic actuation 162 

Thermal imaging of a single-beam sample heated by a temperature-controlled hot plate calibrates the 163 

infrared camera (FLIR E60). The calibrated camera measures the equilibrium temperature of the sample 164 

under a current ranging from 0 to 40 mA (at room temperature of 25 °C). Supplementary Fig. 4d shows the 165 

measured temperatures against corresponding applied currents, which is consistent with the analytical 166 

prediction validated by FEA (Supplementary Note S2). The temperature change (∆𝑇 ) induced by Joule 167 

heating under a current of 27 mA is ~35 °C upon equilibrium (at room temperature of 25 °C). 168 

 169 

S5.3 Actuation time under electromagnetic actuation 170 

The single-beam sample is actuated by an applied current I (I = 10 mA, u/L ~14%). The actuation process 171 

is monitored by a side camera (Canon EOS R, 60 fps). Supplementary Fig. 6 shows the sample going through 172 

a vibration state before reaching a steady state; the sample is considered to have reached the steady state 173 

when the measured displacement (u) is identical to the subsequent frame in the recorded video. The 174 

experimental observation shows that a steady state can be reached within 0.067 s (Supplementary Fig. 6). 175 

 176 
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S5.4 Cycling test under electromagnetic actuation 177 

The single-beam sample undergoes a current-controlled high-cycle test. The sample deforms 1000 cycles 178 

at a frequency of 1 Hz with a displacement amplitude 𝑢  monitored by a side camera for both small 179 

deformation (u/L ~14%, I = 10 mA) and large deformation (u/L ~ 28%, I = 20 mA). Supplementary Fig. 7a, b 180 

shows that the single-beam sample under the current cycles of ±10 mA exhibits a stable deformation behavior 181 

over 1000 cycles with a constant displacement amplitude, u = 1.55 ± 0.02 mm (u/L ~14%). Supplementary 182 

Fig. 7c, d shows the results of the cycling test under the current amplitude of ±20 mA. The single-beam 183 

sample maintains a stable deformation behavior over the first 500 cycles with a constant displacement 184 

amplitude, u = 3.08 ± 0.06 mm (u/L ~28%). Upon the remaining 500 cycles, both the mean value and the 185 

standard deviation of the displacement amplitude increase with the cycles, with an average amplitude, u = 186 

3.18 ± 0.18 mm (u/L ~ 29%), for the last 100 cycles. Overall, the single-beam sample deforms with an 187 

amplitude, u = 3.10 ± 0.12 mm (u/L ~ 28%) under the cycling current of ±20 mA over 1000 cycles at the 188 

frequency of 1 Hz. 189 

 190 

Supplementary Note S6: Optimization algorithm of the experiment-driven process 191 

S6.1 Loss function and optimization 192 

In the experiment-driven process, the real-time imaging evaluates the difference between the current 193 

sample (𝑢𝑖 ) and the target (𝑢𝑖
∗ ), provides an in-situ nodal displacement error analysis. Changes in the 194 

actuation, 𝑽 = {𝑉𝒋}, will update the loss function, 𝑓(𝑽) = ∑ 𝑒𝑖
2

𝑖 , defined as the sum of square of the error 195 

(normalized by system size as 𝑒𝑖 = (𝑢𝑖 − 𝑢𝑖
∗)/𝐿 ). Sequential Least Squares Programming (SLSQP), a 196 

gradient-descent based algorithm with 3-point method computes the Jacobian matrix to minimize the loss 197 

function. For each 𝑉𝒋 (𝑉𝑗 is the voltage input for jth port), 3-point method requires two function evaluations to 198 

calculate the numerical approximation of the Jacobian matrix. Each iteration requires 2×(N+M) function 199 

evaluations for Jacobian calculation and a further 2 function evaluations for the absolute step size calculation 200 
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to fit into the constraints for a N×M sample.  201 

Supplementary Fig. 30 shows three representative descending processes of loss function 𝑓(𝑽) over 15 202 

iterations for a 4×4 sample morphing into shape I, III, IV (see Supplementary Note S7 and Supplementary 203 

Fig. 32). According to the experimental observation, 𝑓(𝑽) (with an initial value 𝑓(𝑽 = 𝟎) in the range of 204 

0.05-0.35) descends by ~99.5% to a steady state in 5-15 iterations. A maximum final loss, 𝑓0 ≤205 

0.005𝑓(𝑽 = 𝟎), sets one of the stopping criteria to generate the output and a maximum of 15 iterations sets 206 

another bound to stop the optimization process. 207 

 208 

S6.2 Limitations in experimental-driven optimization 209 

Experimental noises and constraints pose limitations on the performance of the optimization process. The 210 

major limiting factors in the current setup are the discrete actuation voltages, the maximum actuation allowed 211 

for reversible deformation, and the measurement uncertainties in 3D imaging ( 𝛿𝑢  = 0.016 mm, 212 

Supplementary Note S12). The discrete actuation comes from the 12-bit pulse-width modulation (PWM) 213 

drivers followed by the voltage amplifier circuits, which provide actuation voltages in the range of 0-6 V in a 214 

discrete step of ~0.0015 V. The mechanical and thermal characterizations (Supplementary Note S5) suggest 215 

the maximum allowed current for reversible deformation to be 27 mA. FEA simulation provides a linear 216 

relation between the current flow (𝑰) in each serpentine beam and portal voltage(V) as 𝑰 =  𝑪𝐈𝑽. This model 217 

prediction of 𝑰 based on applied 𝑽 serves as a virtual current monitor to set a hard condition for V ensuring 218 

that the current is below 27 mA everywhere in the sample.  219 

Supplementary Fig. 31a shows a simulation result of the impact of the experimental noises and 220 

constraints on the optimization. The simulation takes the linear model (Eq. 1) with uncertainties and 221 

constraints characterized from the experiment and evaluates the final loss 𝑓0 of a 4×4 sample morphing 222 

target shape (Fig. 3b) post 15 iterations. The distribution of 𝑓0 from simulation agrees with the experiments 223 
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given 1,000 trials with a mode at 3D imaging noise 𝛿𝑢 = 0.016 mm, 12-bits PWM, and maximum current Imax 224 

= 27 mA. Supplementary Fig. 31b shows the impact of the discrete voltage on the optimization process 225 

without imaging noise. The final loss can reach 1.96×10-5 in the case of 12-bit PWM signal. A 20-bit resolution 226 

gives a final loss comparable to the ideal situation with continuous voltage which yields a final loss 𝑓0 227 

~3.3 × 10−5. Supplementary Fig. 31a–d shows the distribution of 𝑓0 with decreasing imaging noise (𝛿𝑢). The 228 

result indicates that distribution broadens as the uncertainty increases. Around 70% of 𝑓0 reaches a value 229 

less than 3 × 10−4 when 𝛿𝑢 = 0.016 mm, which indicates that the yielding rate of the experiment-driven 230 

process with a maximum iteration of 15 is around 70%. 231 

 232 

S6.3 Speed of the feedback control and optimization cycle 233 

Supplementary Table 1 listed the detailed, representative time budget of each step during one function 234 

evaluation for the experiment-driven optimization of a 4×4 sample. A remote computer takes an average of 235 

0.06 s to send the updated values to the peripheral Raspberry Pi to alter the voltages in 16 PWM channels. 236 

The algorithm pauses 0.1 s to wait for the sample to settle to its steady state upon actuation. The 3D imaging 237 

process consists of three consecutive steps: taking images of the sample from stereo cameras (0.08 s), 238 

detecting locations of the nodes in two images using OpenCV-Python matchTemplate function (0.11 s), 239 

calculating the 3D-recontructed nodal displacements using OpenCV-Python reprojectImageTo3D function 240 

(0.00 s). It takes a total of 0.19 s to get one feedback from 3D imaging. The remote computer runs the 241 

optimization algorithm (0.00 s). Overall, the time expenditure for each loss function evaluation cycle is ~0.35 242 

s. Based on the experimental observation, a 4×4 sample takes an average of ~2.5 min to morph a shape 243 

from a zero-actuation initial state. 244 

 245 

Supplementary Note S7: The abstract target curves and surfaces 246 

The target curve in Supplementary Fig. 15c is a segment of arc, with the following expression 247 
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  ( )
2 2

2 2 4
Z ,  

8

L c
r X r c r

c

+
= − − − = . (S8) 248 

c=0.1L leads to the particular shape in Supplementary Fig. 15c. The target curve in Supplementary Fig. 15d 249 

is a sinusoidal function 
2

sin
X

Z c
L

 
= −  

 
. c=0.15L leads to the particular shape in Supplementary Fig. 15d. 250 

The target shapes in the dynamic process in Fig. 1d, and the shapes studied in Fig. 3 and Supplementary 251 

Fig. 32 are defined by the following functions, with Z denoting the out-of-plane coordinate, and X and Y 252 

denoting the in-plane coordinates.  253 

Function 1 254 

 
( )

2 2

2 2 2 2 2

2 2

2

0

a c
r

c

r X Y r c X X a
Z

X Y a

+
=

 − − − − + 
= 

+ 

.  (S9) 255 

The ‘growing up’ process is simulated by a=0.5L, and c increasing from 0 to 0.3L. Shape I in Supplementary 256 

Fig. 32 is defined by a=0.5L and c=0.2L. 257 

Function 2 258 

 
( ) ( )

2 2

c c

2
exp

X X Y Y
Z c

a

 − + −
= − 

  

. (S10) 259 

The ‘moving around’ process in Fig. 1d is simulated by c=0.2L, a=0.4L, and changing Xc and Yc such that the 260 

point with the maximum Z- coordinate moves along a path in the XY plane. The prescribed path in Fig. 1d 261 

starts at (Xc, Yc) = (0, 0), moves to ( 0.2 2 L, 0), moves circularly with 2 2

c c 0.2 2X Y L+ = , and then back to 262 

(0, 0). Shape II in Supplementary Fig. 32 is defined by Xc = Yc = 0.2L, a = 0.4L, and c = 0.2L. 263 

Function 3 264 

 
( ) ( )

2 2

c c

2
1,2

1 1
exp

i i

i

i

X X Y Y
Z c

a=

    + − + + −    
= − 

 
 

 . (S11) 265 

The first a few shapes of the ‘splitting up’ process in Fig. 1d is simulated by c1 = c2 = 0.2L, a = 0.32L, and Xc 266 
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and Yc changing from 0 to 0.2L, with the last one denoted by shape A. Each shape is scaled such that the 267 

maximum Z coordinate is 0.2L. The last shape of the ‘splitting up’ process (shape B) is simulated by c1 = -c2 268 

= 0.1L, a = 0.4L, and Xc = Yc = 0.25L. A few shapes are added between shape A and B by interpolating the 269 

two shapes to make the process continuous. The ‘oscillating’ process in Fig. 1d is simulated by Xc = Yc = 0.25L, 270 

a = 0.4L, c1 = -c2, and c1 changing periodically between -0.1L and 0.1L. The target shape in Fig. 3, the same 271 

as Shape III in Supplementary Fig. 32, is defined by Xc = Yc = 0.2L, a = 0.4L, and c1 = -c2 = 0.1L. 272 

Function 4 273 

 ( )
( ) ( )

2 2

c c

2
1,2

1,2

1 1
1 exp
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i j
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X X Y Y
Z c

a

+
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= − − 

 
 

 . (S12) 274 

Shape IV in Supplementary Fig. 32 is defined by Xc = Yc = 0.25L, a = 0.4L, and c = 0.1L. 275 

Function 5 276 

 
cos 1

2

0

c X
X a

aZ

X a

   
+    
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 

. (S13) 277 

Shape V in Supplementary Fig. 32 is defined by a = 0.5L and c = 0.2L. 278 

Function 6 279 

 

2 2 2 2
' cos ,  '

2 2 2 2

'
cos 1 '

2

0 '

X X Y Y X Y

c X
X a

aZ

X a





= + = − +

   
+    

=    
 

. (S14) 280 

Shape VI in Supplementary Fig. 32 is defined by a = 0.5L and c = 0.1L. 281 

In addition to those shapes presented in the manuscript, the serpentine-shaped mesh structures may 282 

also be deformed to form a number of surfaces represented by the general forms of Functions 1~6, as studied 283 

in Supplementary Note S10.2. 284 

 285 
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Supplementary Note S8: Experimental characterization of an array of 8 serpentine beams sample in 286 

response to electromagnetic actuation 287 

Supplementary Fig. 15a shows a typical sample (sample length L = 20.6 mm, sample width W = 12.4 mm, 288 

vertical serpentine length LM = 5 mm, horizontal serpentine length LN = 1 mm) constructed from an array of 289 

N (N = 8) serpentine beams. The horizontal serpentines are polyimide (PI) beams and are non-conductive. 290 

Consequently, the sample has 8 electrical-controlled and mechanical-coupled serpentine beams. A voltage 291 

vector (V) of size 16, applied to the peripheral ports (8 pairs of ports), controls the current density (J) in each 292 

beam. The displacements (u) of the intersections of adjacent serpentine beams (the nodes) define the outline 293 

of the deformed shape. For the modal-driven approach, the displacement of the ith node, ui, is approximately 294 

linearly related to the response of the ith node to each jth portal voltage, Vj, as follows: 295 

𝑢𝑖 = ∑ 𝐶𝑖𝑗𝑉𝑗 ,

2𝑁

𝑗=1

 for 𝑖 = 1, … 𝑁.   296 

The coupling matrix 𝑪 = {𝐶𝑖𝑗}  fully describes this approximately linear mechanical system driven by 297 

electromagnetic force. Supplementary Fig. 15b shows FEA and experimental characterization of the electro-298 

magneto-mechanical behavior for representative nodes of the array sample provided voltages in the range 299 

of 0~2.5 V. A regression analysis on the FEA results (R2~0.95) provides the coupling coefficients Cij for a 300 

linear-system characterization. This linear approximation enables a model-driven approach that optimizes 301 

the portal voltages for the precursor array to deform to a mathematically-defined target shape. Supplementary 302 

Fig. 15c, d shows the morphing results of the sample targeting spherical and sinusoidal shapes. 303 

 304 

Supplementary Note S9: Definition of the error between deformed and target shapes 305 

For the deformed array of N serpentine structures, a continuous 2D curve ( )DeformZ X  can be constructed 306 

from the nodal positions un (n = 0~N+1, u0 = uN+1 = 0) via interpolation. The error between this deformed 2D 307 

curve and the target curve ( )Z X  is then defined as 308 
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 ( ) ( )
2/2

Deform

/2

1 1
Error d

L

L
Z X Z X X

L L −
 = −  . (S15) 309 

Similarly, for the deformed N × N mesh structure, a continuous 3D surface ( )DeformZ X Y，  can be 310 

constructed from the nodal displacements 
m

nu   (m = 0~N+1, n = 0~N+1, 
0

nu  =
1N

nu +
 = 0

mu  = 1

m

Nu +  = 0) via 311 

interpolation. The error between this deformed 3D surface and the target surface ( )Z X Y，  is then defined 312 

as 313 

 ( ) ( )
2/2 /2

Deform

2 /2 /2

1 1
Error d d

L L

L L
Z X Y Z X Y X Y

L L − −
 = −   ， ， . (S16) 314 

 315 

Supplementary Note S10: A numerical study on the feasible range of target shapes 316 

To illustrate that the same mesh structure can be deformed to form abundant target shapes, a numerical 317 

study is presented in this Supplementary Note on the error (see Supplementary Note 9 for the definition) of 318 

the deformed shape for a few classes of target shapes in general form.  319 

S10.1 Target 2D curves 320 

For functions defined in the range / 2 / 2L X L−    and taking the form 321 

1 2

2 4
cos 1 cos 1

X X
Z A A

L L

       
= + + −      

      
, changing the parameters A1 and A2 leads to various target 2D 322 

curves. The model-driven approach can be applied for the same precursor structure to form many of these 323 

2D curves. The error of the shapes formed by the array of 8 serpentine beams presented in Supplementary 324 

Fig.15 is shown in the contour plot of Supplementary Fig. 21a. When the parameters A1/L and A2/L are in a 325 

wide range, the error is less than 2%, indicating that a number of target curves can be approximated by the 326 

deformed structure quite accurately. This error mainly comes from the limitation on the electric current to 327 

avoid temperature change from Joule heating (I < 27.5mA), which limits the ability to form target shapes that 328 

require large deformation.  329 

The above target curves are symmetric with respect to the vertical axis at X = 0. Similarly, the asymmetric 330 
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target 2D curves defined in the range / 2 / 2L X L−    and taking the form 331 

1 2

2π 4π
sin sin

X X
Z B B

L L

   
= +   

   
 can also be formed by the mesh structure quite accurately when B1/L and 332 

B2/L are in a wide range (Supplementary Fig. 21b).  333 

In a more general case, a target 2D curve ( )Z X   defined in the range / 2 / 2L X L−     with 334 

( )/ 2 0Z L =  may be expressed by the Fourier series as  335 

 ( )
1

1 1

2 2
cos 1 sin

Q Q
k

k k

k k

k X k X
Z A B

L L

 −

= =

    
= + − +    

    
  . (S17) 336 

The prior study applies to the curves that are symmetric (Bk = 0) or asymmetric (Ak = 0) with respect to the 337 

vertical axis at X = 0 and are dominated by the first two terms (Ak>2 ≈ 0 and Bk>2 ≈ 0). The curves that involve 338 

higher order terms may be formed by the structure with more serpentines (i.e. larger N). Supplementary Fig. 339 

22 shows that the array of 16 serpentine beams may form target curves in a wide range with order Q = 4 in 340 

the Fourier series.  341 

S10.2 Target 3D surfaces 342 

For functions defined in the range / 2 ,  / 2L X Y L−    and taking the form defined by Function 1 (Eq. 343 

(S9)) in Supplementary Note S7, changing the parameters a and c leads to various target 3D surfaces. The 344 

model-driven approach can be applied for the same precursor structure to form many of these 3D surface. 345 

The error of the shapes formed by the 4 × 4 mesh structure presented in the main text is shown in the contour 346 

plot of Supplementary Fig. 23. When the parameters a/L and c/L are in a wide range, the error is less than 347 

2%, indicating that a number of target surfaces can be approximated by the deformed mesh structure quite 348 

accurately. Similar analysis is performed to the target 3D surfaces defined by Function 2~6 (Eqs. (S10)-(S14)) 349 

in Supplementary Note S7, showing that the same mesh structure can be deformed to various target shapes 350 

accurately (Supplementary Figs. 24-28).  351 

 352 
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Supplementary Note S11: Computational cost for the model-driven approach 353 

S11.1 Linear system 354 

For the N×N array of serpentine structures presented in the main text, there are 4N-1 independently 355 

controlled port voltages V1, V2, …, V4N-1 (one port is connected to ground and always has zero voltage). FEA 356 

can be performed to establish the relationship between node displacements and port voltages. Applying 357 

voltage Vj at port j and keeping the voltages of other ports being zero, FEA predicts the deformation and an 358 

approximate linear fitting of the nodal displacements gives i ij ju C V= . To obtain the coefficient ijC  for all 359 

voltages, FEA is performed 4N-1 times, each time for j=1, 2,…, 4N-1. When all the port voltages are applied 360 

simultaneously, the nodal displacements are the superposition of those when the voltage is applied 361 

individually due to linearity, i.e. 

4 1

1

N

i ij j

j

u C V
−

=

=  , such that the nodal displacements can be evaluated rapidly 362 

without additional FEA. Therefore, the total number of FEA scales linearly with the system size N, which is 363 

acceptable. 364 

S11.2 Nonlinear system 365 

For a nonlinear system, the above linear superposition approach is no longer valid and the nodal 366 

displacements are nonlinear functions of the port voltages, i.e. ( )1 2 4 1, ,...i i Nu G V V V −= . Taking P values for 367 

each voltage, 4 1NP −  times of FEA is needed to obtain the nonlinear function iG , which is astronomical (e.g. 368 

P = 5 and N = 2 lead to 4 1 57.8 10NM −   ). For the 2×2 array (N = 2) presented in the manuscript, each FEA 369 

takes about 1 hour using a workstation (twenty-core, 2.4GHz processor, 64GB memory). This difficulty in the 370 

model-driven strategy based on computation is common for nonlinear systems.  371 

 372 

Supplementary Note S12: Characterization of the resolution and uncertainty of 3D imaging 373 

Supplementary Fig. 29a is a schematic illustration of the experimental setup for characterization of the 374 

resolution and uncertainty of the 3D imaging methods. In the setup, a side camera (Webcams, ELP, 375 
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3840×2160-pixel resolution, 30 fps) provides direct imaging of the out-of-plane deformation. Analyzing the 376 

images via ImageJ 1.x pipeline gives the ground-truth measurement of the nodal displacement (𝑢m). Two 377 

cameras (Webcams, ELP, 3840×2160-pixel resolution, 30 fps) are placed symmetrically side-by-side above 378 

the sample to take top-view images. A calibration algorithm (OpenCV-Python calibrateCamera function) is 379 

applied to a collection of checkerboard images (custom-made, 7×8 squares, 2×2 mm per square) to correct 380 

lens distortion[S3]. The sample nodes provide distinctive cross geometry for image registration. A customized 381 

template matching algorithm (based on OpenCV-Python matchTemplate function) returns nodal central 382 

coordinates ([𝑥1 , 𝑦1 ] and [𝑥2 , 𝑦2 ]) from the pair imaging in units of pixels (px). A perspective projection 383 

matrix[S4] transforms the disparity ( 𝐷(𝑥, 𝑦) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ) at the estimated location ([ 𝑥 =384 

(𝑥1 + 𝑥2)/2, 𝑦 = (𝑦1 + 𝑦2)/2]), to the relative depth between the camera plane and the node, 𝑍(𝑋, 𝑌), as, 385 

[

𝑋
𝑌
𝑍
1

] = [

1 0
0 1

0 0
0 0

0 0
0 0

𝑏𝑓′ 0
0 1

] [

𝑥
𝑦

1/𝐷(𝑥, 𝑦)

1

] ,     386 

where 𝑓′ is the focal length of the cameras, b is the distance between the two cameras. A transformation 387 

algorithm (based on OpenCV-Python reprojectImageTo3D function) implements this 2D-to-3D projection and 388 

predicts the nodal depth in a unit of pixels (px) as 𝑢p =  𝑍(𝑋, 𝑌). 389 

A cycling test on a 4×4 sample (200 actuation cycles of shape IV in Supplementary Fig. 32, 1 Hz) provides 390 

a statistical analysis of the 3D-reconstructed depth measurement (𝑢p). From the results, the mean values and 391 

standard errors of 𝑢p from 200-cycle measurement for the 16 nodes. The distribution of measured depth (𝑢p) 392 

at node 1 of the actuated/unactuated state follow a Gaussian distribution with a standard deviation of 393 

0.254/0.246. The result of analyzing the distribution of 𝑢p of all 16 nodes reveals that the stereo-imaging 394 

method is capable of producing a measurement with a mean standard deviation, 𝛿𝑢𝑝 = 0.25 px for all nodes 395 

(Supplementary Fig. 29b). The side camera measurement ( 𝑢𝑚 ) has an uncertainty, 𝛿𝑢𝑚~ ± 0.015 . 396 

Supplementary Fig. 29c shows a linear relation between 𝑢p and 𝑢m predicted by a Deming regression on 397 
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the experimental data as 𝑢𝑚 = 𝑎𝑢p +  𝑏 , where 𝑎 = −0.0664 ± 2.543 × 10−4, 𝑏 = 12.05 ± 0.038  (R2 = 398 

0.997). The regression model defines the 3D-reconstructed nodal displacement, 𝑢(𝑢p) = 𝑢𝑚(𝑢𝑝). The nodal 399 

displacement (𝑢) measured by 3D imaging method has a resolution of ~0.006 mm and an uncertainty of 400 

±0.055 mm.  401 

The pixel form measurement of the X-Y coordinates can be converted to physical values given a reference 402 

scale bar. Renka-Cline gridding matrix method produces an interpolated 3D surfaces from the reconstructed 403 

nodal displacement 𝑢(𝑋, 𝑌) at three inserted query points between the two nearest nodes.  404 

 405 

Supplementary Note S13: Self-evolving of a nonlinear system 406 

A 2×2 sample (L/W = 25.0 mm, LN/M = 10.0 mm), consisting of serpentine beams without any straight 407 

segments connecting the semi-circle parts, represents a metasurface that exhibits an amplified non-linear 408 

mechanical behavior in response to the voltage inputs. Supplementary Fig. 36 a–d shows the side-view 409 

images of the sample deforming out-of-plane given an increasing voltage to port 1 (Fig. 4d). Centered in the 410 

same magnetic setup, with the increase of the voltage input, the out-of-plane bending initially dominates the 411 

structure deformation but saturates at a small displacement due to reduced arc length, such that the 412 

serpentine beams need to overcome the tensile rigidity much larger than the bending rigidity for further 413 

deformation. The goodness of fit (R2) of a linear regression on this response (for model-driven approach) is 414 

0.8. In the experiment-driven approach, the optimization takes a loss function and stopping criteria of the 415 

same form as the 4×4 sample. The experimental observation shows occasional trapping of 𝑓(𝑽) in local 416 

minima. A repeated optimization process overcomes the local-minimum problem in the nonlinear system.  417 

 418 

Supplementary Note S14: Self-evolving toward multifunction 419 

Supplementary Fig. 39a shows the illustration of a 3×3 sample (L/W = 14.8 mm, LN/M = 2.0 mm) with 9 420 

reflective gold patches (Au, 2 mm × 2 mm in size, 300 nm in thickness). The receiving screen (white printer 421 
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paper sheets, 55 mm × 80 mm) is placed 40 mm above the sample in parallel to the XY-plane. A red laser 422 

beam (~650 nm in wavelength and ~1 mm in beam diameter) and a green laser beam (~520 nm in wavelength 423 

and ~1 mm in beam diameter) hit on the center of one patch and got reflected. A top camera (Webcams, ELP, 424 

3840×2160-pixel resolution, 30 fps) monitors the reflected laser spots on the receiving screen. The target 425 

optical function is to overlap two laser spots on the receiving screen. A customized imaging analysis method 426 

detects the centroid coordinates of the red/green laser spots as the current locations on the screen 427 

([𝑥𝑟/𝑔, 𝑦𝑟/𝑔], Supplementary Fig. 38a). The target structural function is to keep central nodal displacement 428 

(𝑢5) at -0.5 mm (𝑢5
∗  = -0.5 mm). A linear model (provided by FEA) for the sample monitors 𝑢5 given the 429 

prescribed actuation. A post analysis via ex-situ 3D imaging shows an agreement between the model 430 

prediction and the experimental results. 431 

A loss function 𝑓multi(𝑽) (Supplementary Fig. 38b), tailored for the target multifunctionality, is a linear 432 

combination of two parts: 1) 𝑓opt(𝑽)  evaluating the distance between two reflected spots, and 2) 433 

𝑓struct(𝑽) evaluating the central nodal error, both normalized to have an initial value of 1 following: 434 

𝑓multi(𝑽) =  𝑎𝑓opt(𝑽) +  𝑏𝑓struct(𝑽), 435 

𝑓opt(𝑽) =
(𝑥𝑟 − 𝑥𝑔)2 + (𝑦𝑟 − 𝑦𝑔)2 

(𝑥0
𝑟 − 𝑥0

𝑔
)

2
+ (𝑦0

𝑟 − 𝑦0
𝑔

)
2  , 436 

𝑓struct(𝑽) = (
𝑢5−𝑢5

∗

𝑢5
∗ )2,                                                                                                                                                                                                                        437 

where [𝑥0
𝑟/𝑔

, 𝑦0
𝑟/𝑔

] is the initial position of red/green spots on the screen. The two target functions are equally 438 

weighted with 𝑎 = 𝑏 = 0.5. The optimization takes the same stopping criteria as the 4×4 sample. 439 

 440 
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Supplementary Figure 1 | Schematic illustration of the fabrication process. a, Prepare a sacrificial layer
(PMMA) on a silicon wafer. b, Spin coat a bottom polyimide (PI) layer. c, Define the gold (Au) pattern. d, Spin
coat the top PI layer. e, Define the PI pattern. f, Undercut sacrificial layer to release the sample from the
silicon wafer.
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Supplementary Figure 2 | An analytical model and FEA study of the mechanical and thermal 
behaviors of a single serpentine beam in response to electromagnetic actuation. a, Schematic 
illustration (top and cross-sectional views) of the initial state (top) and actuation state (bottom) of a serpentine 
beam b, Analytical model and FEA study of the relationship of the maximum out-of-plane displacement u vs. 
the combination of electric current I, magnetic field B, material and geometry parameters. c, An analytical 
model of the temperature change due to Joule heating, compared with FEA study of the temperature change 
of the single serpentine beam.
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Supplementary Figure 3 | Magnetic setup for Lorentz force actuation. a, Schematic illustration of the
magnetic setup consisting of two parallel disks of Neodymium magnets (surface field ~2640 Gauss) fixed on
a 3D-printed mounting stage and spaced 55 mm apart. The setup generates a relatively uniform magnetic
field of ~0.224 ± 0.016 T in the center (O) and perpendicular to the disk plane (X-direction). b, The magnetic
flux density in X-direction (BX) measured by a gaussmeter (GMHT201, Apex Magnets) across the center (O)
along X-axis and Y-axis. The model-driven process considers the magnetic field to be uniform with B = 0.224
T and neglects the spatial variation.
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Supplementary Figure 4
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Supplementary Figure 4 | Experimental characterizations of the mechanical and thermal behaviors of
a single serpentine beam in response to electromagnetic actuation. a, Schematic illustration of a single
beam, placed in a magnetic field B and carrying a current density J, deforms out-of-plane by a maximum
displacement u, under an electromagnetic force 𝑭EM = 𝑱 × 𝑩 . b, Optical images of a representative
serpentine beam (side view) deformed to the maximum displacement u. If exceeding the elastic limit, an
irreversible deformation u’ will retain after unloading. Scale bar, 1 mm. c, d, e, Experimental characterizations
of mechanical (c) and thermal (d) behaviors of a single beam under current-controlled electromagnetic
actuation in comparison with theoretical predictions.
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Supplementary Figure 6
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Supplementary Figure 6 | Characterization of the response time of a single-beam sample. A single
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Supplementary Figure 7 | Cyclic mechanical behavior of a single-beam sample. The displacement of
the beam is monitored by a side camera during 1000 actuation cycles at 1 Hz with current amplitude of ±10
mA ((a), (b)) and ±20 mA ((c), (d)). Under large deformation (±20 mA) the strain amplitude increases 1%
post 1,000 cycles.
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Supplementary Figure 8 | Control and amplification circuits. A resistor of 50 Ω represents the impedance
of the sample between the two ports. Each PWM output signal is amplified by a MOSFET (Infineon Tech,
IRF510N) using an external power supply (Vex = 6 V).



Supplementary Figure 9
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Supplementary Figure 9 | Schematic illustration of an array of N serpentine beams.
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Supplementary Figure 11

Supplementary Figure 11 | Schematic illustration and formula of 4 implicit shape shifting processes.
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Supplementary Figure 12

Supplementary Figure 12 | FEA of the 4×4 sample in Fig. 1d
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Supplementary Figure 13

Supplementary Figure 13 | Distribution of current density for the implicit shapes presented in Fig. 1d. a,
4×4 sample. b, 8×8 sample.
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Supplementary Figure 14

Supplementary Figure 14 | Distribution of the equivalent strain in Au and the maximum principal strain 
in PI for the implicit shapes presented in Fig. 1d a, 4×4 sample. b, 8×8 sample.
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Supplementary Figure 15 | Modeling and experimental investigations of an array of 8 serpentine
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Supplementary Figure 16 | a, b, Distribution of the current (a), and the equivalent strain in Au and the
maximum principal strain in PI (b) for the 5 shapes of the dynamic process presented in Fig. 2a.
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in PI for the 5 shapes of the falling droplet imitated by the 4x4 sample in Fig. 2b.
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Supplementary Figure 20 | Distribution of the equivalent strain in Au and the maximum principal strain 
in PI for the 5 shapes of the falling droplet imitated by the 8×8 sample in Fig. 2c.
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Supplementary Figure 24 | Error between the deformed 4×4 sample and target shapes defined by a 
Gaussian function. With parameters in the region enclosed by the white dashed lines, the normalized error is 
smaller than 2%.
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Supplementary Figure 25 | Error between the deformed 4×4 sample and target shapes defined by a 
Gaussian function with two terms. With parameters in the region enclosed by the white dashed lines, the 
normalized error is smaller than 2%.
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Supplementary Figure 26 | Error between the deformed 4×4 sample and target shapes defined by a 
Gaussian function with four terms. With parameters in the region enclosed by the white dashed lines, the 
normalized error is smaller than 2%.
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Supplementary Figure 27

Supplementary Figure 27 | Error between the deformed 4×4 sample and target shapes defined by a 
sinusoidal function. With parameters in the region enclosed by the white dashed lines, the normalized error 
is smaller than 2%.
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Supplementary Figure 28

Supplementary Figure 28 | Error between the deformed 4×4 sample and target shapes defined by a 
sinusoidal function along the diagonal direction. With parameters in the region enclosed by the white 
dashed lines, the normalized error is smaller than 2%.

Target surface

Top view Side view

2a

Y
X

Z

Y

X

0 c
Z

Y’ X’

c

'cos 1 '
2
0 '

c X X a
aZ

X a

.­ ª º§ · + �° ¨ ¸« »= © ¹® ¬ ¼
° !¯

2 2'
2 2

X X Y= +

2 2'
2 2

Y X Y= − +

L

0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

2a/L

c/
a -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0.2

-0.1

0.0

0.1

0.2

0.000
0.01000
0.02000
0.03000
0.04000
0.05000
0.06000
0.07000
0.08000
0.09000
0.1000

0

12%
Error

Error < 2%



Supplementary Figure 29
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Supplementary Figure 29 | Characterization of the resolution and error of 3D imaging. a, The
illustration of the 3D reconstruction characterization process. A side camera (Webcams, ELP, 3840
x 2160-pixel resolution, 30 fps) provides the measurement of nodal displacement (um) as the ground
truth for 3D imaging calibration. Two cameras (Webcams, ELP, 3840x2160-pixel resolution, 30 fps)
are placed symmetrically on the top of the sample. Stereo-imaging method reconstructs the real-
time 3D shape of the sample, providing the depth measurement (up) between nodes and cameras in
pixel units. The Deming regression models the relation between up and um that defines the 3D-
reconstructed nodal displacement (u(up)). c, The depths (up) of the 16 nodes are measured by the
stereo-imaging method when a 4×4 sample is under a cyclic actuation (200 cycles of shape IV in
Supplementary Note S7). Both the actuated and unactuated distribution of measured depth (up)
follow a Gaussian distribution. The result of analyzing the distribution of up of all 16 nodes reveals
that the stereo-imaging method is capable of producing a measurement with a mean standard
deviation of 0.25. d, The Deming regressor models the relation between up and um, providing the
prediction for 3D-reconstructed displacement u(up).
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Supplementary Figure 30
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Supplementary Figure 30 | Typical descent of loss function over optimization iterations. a, b, c, For a 
4×4 sample morphing into Shape I (a), III (b), IV (c), which are shown in Supplementary Note S7, the loss 
function 𝑓 𝑉  (with an initial value 𝑓  𝑽 = 0  in the range of 0.05-0.35) descends by ~99.5% to a steady state in 
5-15 iterations. Each iteration takes 34 function evaluations given 32 input ports.
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Supplementary Figure 31 | Simulation of the impact of experimental noises and constraints on the
optimization process. a, The comparison between simulation (3D imaging noise 𝛿𝑢 = 0.016 mm, 12-bits
PWM, maximum current Imax = 27 mA) and the experimental results of a 4×4 sample morphing into a target
shape (Fig. 3b) from 1,000 trials. b, The simulation results of 𝑓 𝑽 with n-bit PWM voltage compared to the
noise-free simulation with continuous voltage control. c-f, The distribution of the final loss 𝑓0 after 15
iterations over 1,000 simulation trials morphing into the same target shape (Fig. 3b) with a decreasing 3D
imaging uncertainty (𝛿𝑢) of 0.024 mm (c), 0.016 mm (d), 0.008 mm (e) and 0.004 mm (f).
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Supplementary Figure 32

Supplementary Figure 32 | Experiment-driven self-evolving process in comparison with the model-
driven approach. a, Target implicit shapes and optical images of the experiment-driven morphing results of
a 4×4 sample. b, 3D reconstructed surfaces overlaid with contour plots of the minimized errors (e) and c,
histograms of the minimized errors for model-driven and experiment-driven outputs. Scale bars, 5 mm.
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Supplementary Figure 33 | Schematic illustration and formula of 6 classes of implicit shapes.
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Supplementary Figure 34 | Distribution of current density for the 6 implicit shapes presented in Fig. 3b 
DQG 6XSSOHPHQWDU\ )LJ� ��.
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Supplementary Figure 35 | Distribution of the equivalent strain in Au and the maximum principal strain 
in PI for the 6 abstract implicit shapes presented in Fig. 3b DQG 6XSSOHPHQWDU\ )LJ� ��.
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Supplementary Figure 36 | The optical images of a 2×2 sample with modified serpentine design for
amplified nonlinear mechanical behavior in response to a range of actuation voltages. a, b, c, d, The
side-view images of the sample deforming out-of-plane given an increasing voltage to port 1 (Fig. 4d) given
V1 = 0 V (a), 0.25 V (b), 2.75 V (c), and 3 V (d). The rate of change of u1 decreases as the actuation voltage
increases. Scale bar, 5 mm.
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Supplementary Figure 37

Supplementary Figure 37 | Self-evolving shape morphing toward semi-real-time shape learning. 
a, Schematic illustration of a duplicated stereo-imaging setup enabling a semi-real-time control of a 4×4 
sample simulating the dynamic shape shifting of a palm surface with 4×4 markers. b, Experimental results 
of the continuous semi-real-time morphing of the palm surface with the thumb moving up. c, Morphing 
results of representative frames from a recording of hand making eight gestures related to different fingers 
moving. Scale bars, 5 mm.
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Supplementary Figure 38

Supplementary Figure 38 | A 3×3 sample self-evolving to achieve an optical and a structural function
simultaneously. a, Representative optical images of the laser spots on the receiving screen. The target
optical function is to overlap two laser spots on the receiving screen. A customized imaging analysis method
detects the centroid coordinates of the red/green laser spots as the current locations on the screen
([𝑥𝑟/𝑔, 𝑦𝑟/𝑔] . b, A typical descent of loss functions over optimization iterations. The optimized loss function
(𝑓multi(V)) is a linear combination of two parts: I) an optical loss function 𝑓opt(V) that evaluates the distance
between the center of the two laser spots; II) a structural loss function 𝑓struct(V) that evaluates the central
node displacement error. Scale bar, 5 mm.
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Supplementary Figure 39 | Allowed shape (structural-function) configurations of a 3×3 sample (Fig.
5c, d) when enforcing only the optical function. a, Allowed values of the central nodal displacement when
enforcing only the optical function for three distinctive incident beam angles. b, Model predictions, and ex-situ
3D imaging results of the sample (side-view) overlapping the laser spots and in the configurations with the
highest, lowest, and target central displacement.
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Update 
Actuation

Wait for 
Steady 
State

3D imaging

Optimizat
ion Sum

Stereo 
Imaging

Template 
Matching

Projection and 
Reconstruction

0.06 ± 0.01 s 0.1 ± 0.05 s 0.08 ± 0.04 s 0.11 ± 0.05 s 0.00 s 0.00 s 0.35 ± 0.15 s

Supplementary Table 1 | Function evaluation time profiling. An evaluation of the time budget of each
step during the experiment-driven optimization of a 4×4 sample is presented. A function evaluation takes on
average 0.35 s to complete.
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