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Supplementary Note S1: Fabrication procedures for the metasurface

Sacrificial layer

1. Clean silicon wafers with acetone and methanol.

2. Spin coat PMMA to produce a sacrificial layer (3000 rpm, 30 s; bake at 180 °C, 30 s)

Bottom Pl layer

3. Spin coat PI2545 (1500 rpm, 30s; bake at 110 °C, 180 s; bake at 150 °C, 180 s; vacuum bake at 260 °C,

45 min; fully cure)

Metal layer

4. Deposit Ti/Au (10 nm/300 nm in thickness) using electron-beam evaporation.

5. Define metal pattern using photoresist (S1813, 3000 rpm) and wet etching (Au/Ti etchant).

Top Pl layer

6. Spin coat P12545 (1500 rpm, 30s; bake at 110 °C, 180 s; bake at 150°C, 180 s; vacuum bake at 260 °C,

45 min)

7. Deposit Cu (50 nm) using electron beam evaporation.

8. Define Cu pattern as hard mask using photoresist (S1813, 3000 rpm) and wet etching (Cu etchant).

9. Dry etch of Pl in reactive ion etcher (RIE) with CF3; and CF..

10. Remove the Cu hard mask using wet etching (Cu etchant).

Transfer printing

11. Undercut PMMA sacrificial layer in acetone.

12. Transfer sample from silicon wafer to water soluble tape.

13. Dissolve water soluble tape with warm water to make sample freestanding.

Supplementary Note S2: Finite element analysis (FEA)

S$2.1 Deformation actuated by the Lorentz force



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

FEA was performed to simulate the deformation of the serpentine-shaped mesh structures actuated by
Lorentz force. A home-made python script was combined with the commercial software ABAQUS to model
the coupling of electrical current, magnetic field and structural deformation, which was not directly available
in ABAQUSY. The detailed process was reported in the supplementary note of a previous paper of our
groupt™?., In brief, given the port voltages as boundary conditions, the distribution of electric current density
was simulated by ABAQUS, transferred to the python script to calculate the distribution of the Lorentz force
per unit volume, and then the force was transferred back to ABAQUS to simulate the deformation. The
simulation was divided into several loading steps (typically K = 10~20), with a small portion (1/K) of the total
voltages added in each step. Refined mesh with feature size smaller than 1/10 of the ribbon width (bp|)
ensured the accuracy. The elastic modulus (E) and Poisson’s ratio (v) were Ep = 2.5 GPa and vp = 0.34,
respectively for Pl, and Ea, = 78 GPa and va, = 0.42, respectively for Au. The electrical resistivity of Au was

Pau= 2.43x108 m-Q.

S2.2 Temperature change due to Joule heating

The temperature change due to Joule heating of a single serpentine was simulated by the structure-
electricity-heat coupling module of ABAQUS. The geometry was imported from the deformed shape simulated
by the process in Supplementary Note S2.1. The Joule heat per unit volume was calculated by ABAQUS
according to the simulated electric current density. Convective heat transfer with air was applied to all external
surfaces of the structure. Steady-state heat transfer analysis then gave the balanced temperature distribution.
The baseline values of parameters were | = 10 mA, pa, = 2.43x108 m-Q, bp| =100 um, bAu /bPI = 0.95,
h, = 0.3 um, and the convective heat transfer coefficient with air Har = 50 W/(m2-K).
Supplementary Note S3: Analytical model and scaling law for the deformation actuated by Lorentz

force
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$3.1 Analytical model of a single serpentine structure

Supplementary Fig. 2a shows the 2D precursor of a single serpentine structure of total length L, with two
fixed ends. It consists of N semi-circular rings, connected by N-1 straight ribbons with length H. The distance
between the two adjacent straight ribbons is A = L/N (measured from the central axis, A<<L, H). The semi-
circular rings at the two ends of the serpentine structure are also connected by straight ribbons (length H/2)
to the bonding sites. The n-th semi-circular ring is located at Y =Y, =-L/2 + (n-1)A. The cross-sectional width
(bp|) and thickness (hp|) of the semi-circular rings and straight ribbons are uniform, with the Au thickness
being much smaller than PI thickness.

The serpentine structure deforms into 3D when it is placed in uniform magnetic field B (along negative X-
direction in Supplementary Fig. 2a) and actuated by electric current /. For the level of deformation studied in
this manuscript (i.e. maximum out-of-plane displacement u/L on the order of 10%), the following
simplifications can be made. The semi-circular ring undergoes only out-of-plane (Z- direction) rigid-body
displacement u, (Yn) with no rotation such that it remains horizontal. The straight ribbon undergoes out-of-

plane displacement (denoted by A, for the straight ribbon that connects the semi-circular ring n to n-1) and

n- n A
bending. The boundary conditions are A{(—l) 1%}2% (Y.), An[(—l) %}:uz (Ys) ZX” (i%}:O,

and following force balance the internal force in Z- direction is P, =-BIY, . Based on beam theory,

PH’ BIH®
l“IZ (Yn ) - uZ (Yn—l) = - 3 - 3 Yn ) (Sl)
(S (S

where Ep,bp,hs, is the bending rigidity with the contribution of Au layer neglected, as Au thickness (0.3 ym)
is much smaller than PI thickness (~10 ym). Considering that A<<L and the serpentine structure is fixed at

two ends, the maximum out-of-plane displacement is

BIH3 N/2 3 0 BIH3L2
—— >V, » YdY = ———. (S2)

(Y 0 3 y
E o M EPIbPIhPI L2 8E,,by s A



68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Ep 0, hs%

In Eq. (S2), BIL is the effective Lorentz force and HoL

may be defined as the effective rigidity of the

serpentine structure, such that the displacement is proportional to the effective force divided by the effective
rigidity. This analytical solution (Eq. (S2)) matches well with FEA (see Supplementary Note S2 for details), as
shown in Supplementary Fig. 2b. In the FEA validation, the dots are for FEA with the baseline values of
parameters being B=0.15T, /=10 mA, H=2mm, L =5 mm, E, =2.5GPa, bp| =100 pm, hp| =7.8 um
and A = 200 ym, and each of these 8 parameters varies independently in its representative range; the straight
line corresponds to the analytical solution (Eq. (S2)) with slope being 0.125.

For modest current such that the temperature change due to Joule heating is small and therefore the
change in the electrical resistivity ( 0,, ) can be neglected, the current / is linearly proportional to the applied

N

voltage Vvia | =
paH

(noticing that A<<H, L). Therefore, the out-of-plane displacement is related to the

voltage via

_ BVH’Lb,,h,,

u= . (S3)
8Enbp 15 0,

$3.2 Scaling law for the deformation of the array of N serpentine beams structure

Supplementary Fig. 9 an array of N serpentine beams (along Y-direction, labeled as Sy1, Syz,..., Swn,
Syn+1,..., Syan) connected by N+1 serpentines along X-direction (labeled as Sxo, Sxi,..., Sxn). There is no
metal layer in serpentine Sx; (/ = 0,1,...,N) such that the electric currents in serpentine Sy; and Syn+; are the
same (denoted as /), and each of /; can be applied independently via port voltages. Applying voltage V; to
induce electric current /; in only two serpentines (Sy; and Synsj), dimensional analysis suggests that the

Exbyh5 A
effective Lorentz force is B/iL and the effective rigidity of the serpentine structure is proportional to % ,

such that the displacement of node j (intersection of serpentine Sy; and Syns;), proportional to the effective
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force divided by the effective rigidity, follows the same scaling as in Eq. (S2) and Eq. (S3), with a revised

Bl H3L?
slope to account for the mechanical coupling among the serpentines, i.e. unocm and
PIMPI! P

BH“Lb, h
u MV When all the port voltages V; are applied simultaneously, under the linear assumption
T Enbahiios,

such that the principal of linear superposition applies, the displacements U, are still linearly dependent on

BH’Lb, h,,
Ep by, h; Pau

port voltages Vj and the coefficients in the linear relationship scale with
8$3.3 Scaling law for the deformation of the NxN structures
Supplementary Fig. 10 shows a serpentine-shaped mesh structure consisting of N x (N+1) serpentines
along X- direction (labeled as Si, Sa,..., Snw+1), length Ls) connected by (N+1) x N serpentines along Y-
direction (labeled as Swy+1)+1, S nn+1)+2,-.., Sanv+1) , length Ls). The geometries of all the serpentines are the

same. Port voltages V; (j=0,1,...,4N) are applied at the peripheries of the structure to induce electric currents

H
li (i =1,2,...,2N(N+1)) in the serpentines. The resistance of each serpentine is R z% (noticing that
Au’ "Au
A<<H, Ls). Given N, Ls is linearly proportional to the overall size L of the structure, such that Roc ft’;” 0
Au’ "Au

Therefore, dimensional analysis suggests that the electric currents are linearly dependent on the port

voltages via

_ Abyhy

i ,0 ZDU jo (84)

with the dimensionless coefficients f)ij depending on the geometry. Dimensional analysis also suggests
that the displacements induced by current /; follows the same scaling as in Eq. (S2) with a revised slope to

312 312
BH'Ls | BH'L I. (given N).

account for the mechanical coupling among the serpentines, i.e. u, « S| o |,
EPIbPIhPIA‘ EPIbPIhPIﬁ’

Therefore, under the linear assumption, the principal of linear superposition in combination with Eq. (S4),

6
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suggests that the displacements U, are linearly dependent on the port voltages Vj and the coefficients in

BH?Lb, h,,

the linear relationship scale with 3 :
Epi0e 05 0a,

Supplementary Note S4: Theoretical model of the temperature change due to Joule heating

For a segment of Au (length J6L) encapsulated in Pl (temperature T; see Supplementary Fig. 2a for the

12p,,0L
cross-sectional view), the heat generated by Joule heating per unit time (power) is Wj =L“5. The

enerate
bAu hAu

convective heat transfer per unit time with air (Har—convective heat transfer coefficient, Tar—air temperature)

is W, o =2, (6L)H (T =Ty, ). Energy balance Wg,... =W, leads to
2
AT=T-Ty=— ' Pu_ (S5)
2bPIbAu hAu HAir

As before applying the electric current, temperature of the structure is the same as the air temperature,
AT is also the temperature change due to Joule heating. This analytical solution (Eq. (S5)) is quite accurate
to predict the temperature change of a single serpentine structure, as shown in Supplementary Fig. 2c. In the
FEA validation, the dots are for FEA of the maximum temperature change in the serpentine, with the baseline
values of parameters being / = 10 mA, pau = 2.43x10% m-Q, bp| =100 pum, bAu /bp, =0.95, hAu = 0.3 um,
and Hair= 50 W/(m?-K), and each of these 6 parameters varies independently in its representative range; the
straight line corresponds to the analytical solution (Eq. (S5)) with slope being 0.5.

For the temperature change AT to be smaller than a threshold ATuyper (i.€., the upper limit of the
temperature that the material can tolerate or allowed in biomedical application), the upper limit of the electric

current is

1 <1 _ 2bPIbAu hAu HAirATUpper . (86)
Upper p
Au

Eq. (S6), combined with Eq. (S2), gives the upper limit of the deformation of the single serpentine structure

as



131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

3y 2
uUpper < BH |3— 2bAuhAuHAirATUpper . (S?)
8EPIhPI/1 bPIpAu

Supplementary Note S5: Experimental characterizations of a single serpentine beam in response to
electromagnetic actuation
$§5.1 Mechanical behaviors under electromagnetic actuation

Supplementary Fig. 3a shows a schematic illustration of the experimental configuration. The static
magnetic field is generated by two parallel disks of Neodymium magnets spaced apart by 55 mm, each with
a surface magnetic field of ~2640 Gauss. A single-beam sample (H=1.2 mm, A =190 ym, L = 11.0 mm, 62.4
1+ 0.2 Qinresistance) is placed at the center of the magnetic setup. A customized 3D printed magnet mounting
stage can adjust the spacing between the magnets, by balancing the working space and uniformity of the
magnetic field, 55 mm is chosen as the designed distance. A movable and rotatable sample stage has a fixed
height that is the same as the height of the center of the magnets. Supplementary Fig. 3b, ¢ shows the
magnetic flux density in X-direction (B,) measured by a gaussmeter (GMHT201, Apex Magnets) across the
center (O) along X-axis and Y-axis, B, is ~0.224 + 0.016 T in the center (O). In the model-driven process, a
nonuniformity of the experimental magnetic field is neglected.

Supplementary Fig. 4a shows a serpentine beam carrying a current density J (along Y-axis) deforms
locally under the electromagnetic force, Fgy = J X B. The serpentine beam (A << H) exhibits a linear, spring-
like behavior when deformed out of the sample plane under the electromagnetic actuation (Supplementary
Note S2.1). A side camera (Webcams, ELP, 3840%2160-pixel resolution, 30 fps) monitors the out-of-plane
deformation, after which the displacement (u) is quantified via Imaged 1.x pipeline. This measurement
method produces a resolution of 0.005 mm and an uncertainty of £0.015 mm. Supplementary Fig. 4b shows
a representative optical side view of an actuated serpentine beam with an out-of-plane deformation (u) and

an unloaded irreversible deformation (u'). The measured displacement increases linearly with the actuation

8
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current I in the elastic regime, within which the electro-magneto-mechanical behavior of the beam agrees
with both analytical solution and finite element analysis study (FEA, Supplementary Note S2.1). When the
actuation current exceeds 27.5 mA, the measured u deviates from the analytical prediction, and an
irreversible deformation (u') is observed subsequently when unloaded (Supplementary Fig. 4c). Based on
the experimental observations, the single-beam sample can deform to a maximum of 4.2 + 0.1 mm (u/L ~38%)
while remaining to be fully reversible, with a corresponding maximum current (/) of 27.5 mA (J < 7 x 108 A/m?,

the cross-section area is 3.9 x 10711 m?).

$§5.2 Thermal behaviors under electromagnetic actuation

Thermal imaging of a single-beam sample heated by a temperature-controlled hot plate calibrates the
infrared camera (FLIR E60). The calibrated camera measures the equilibrium temperature of the sample
under a current ranging from 0 to 40 mA (at room temperature of 25 °C). Supplementary Fig. 4d shows the
measured temperatures against corresponding applied currents, which is consistent with the analytical
prediction validated by FEA (Supplementary Note S2). The temperature change (AT) induced by Joule

heating under a current of 27 mA is ~35 °C upon equilibrium (at room temperature of 25 °C).

S$5.3 Actuation time under electromagnetic actuation

The single-beam sample is actuated by an applied current / (/ = 10 mA, u/L ~14%). The actuation process
is monitored by a side camera (Canon EOS R, 60 fps). Supplementary Fig. 6 shows the sample going through
a vibration state before reaching a steady state; the sample is considered to have reached the steady state
when the measured displacement (u) is identical to the subsequent frame in the recorded video. The

experimental observation shows that a steady state can be reached within 0.067 s (Supplementary Fig. 6).
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§5.4 Cycling test under electromagnetic actuation

The single-beam sample undergoes a current-controlled high-cycle test. The sample deforms 1000 cycles
at a frequency of 1 Hz with a displacement amplitude u monitored by a side camera for both small
deformation (u/L ~14%, I = 10 mA) and large deformation (u/L ~ 28%, | = 20 mA). Supplementary Fig. 7a, b
shows that the single-beam sample under the current cycles of £10 mA exhibits a stable deformation behavior
over 1000 cycles with a constant displacement amplitude, v = 1.55 £ 0.02 mm (u/L ~14%). Supplementary
Fig. 7c, d shows the results of the cycling test under the current amplitude of £20 mA. The single-beam
sample maintains a stable deformation behavior over the first 500 cycles with a constant displacement
amplitude, u = 3.08 £ 0.06 mm (u/L ~28%). Upon the remaining 500 cycles, both the mean value and the
standard deviation of the displacement amplitude increase with the cycles, with an average amplitude, u =
3.18 £ 0.18 mm (u/L ~ 29%), for the last 100 cycles. Overall, the single-beam sample deforms with an
amplitude, u = 3.10 £ 0.12 mm (u/L ~ 28%) under the cycling current of £20 mA over 1000 cycles at the

frequency of 1 Hz.

Supplementary Note S$6: Optimization algorithm of the experiment-driven process

S$6.1 Loss function and optimization

In the experiment-driven process, the real-time imaging evaluates the difference between the current
sample (u;) and the target (u;), provides an in-situ nodal displacement error analysis. Changes in the
actuation, V = {V;}, will update the loss function, f(V) = Y e?, defined as the sum of square of the error
(normalized by system size as e; = (u; —u;)/L). Sequential Least Squares Programming (SLSQP), a
gradient-descent based algorithm with 3-point method computes the Jacobian matrix to minimize the loss
function. For each V; (V; is the voltage input for " port), 3-point method requires two function evaluations to
calculate the numerical approximation of the Jacobian matrix. Each iteration requires 2x(N+M) function

evaluations for Jacobian calculation and a further 2 function evaluations for the absolute step size calculation

10
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to fit into the constraints for a NxM sample.

Supplementary Fig. 30 shows three representative descending processes of loss function f(V) over 15
iterations for a 4x4 sample morphing into shape |, lll, IV (see Supplementary Note S7 and Supplementary
Fig. 32). According to the experimental observation, f(V) (with an initial value f(V = 0) in the range of
0.05-0.35) descends by ~99.5% to a steady state in 5-15 iterations. A maximum final loss, f, <
0.005f(V = 0), sets one of the stopping criteria to generate the output and a maximum of 15 iterations sets

another bound to stop the optimization process.

$6.2 Limitations in experimental-driven optimization

Experimental noises and constraints pose limitations on the performance of the optimization process. The
maijor limiting factors in the current setup are the discrete actuation voltages, the maximum actuation allowed
for reversible deformation, and the measurement uncertainties in 3D imaging (6u = 0.016 mm,
Supplementary Note S12). The discrete actuation comes from the 12-bit pulse-width modulation (PWM)
drivers followed by the voltage amplifier circuits, which provide actuation voltages in the range of 0-6 V in a
discrete step of ~0.0015 V. The mechanical and thermal characterizations (Supplementary Note S5) suggest
the maximum allowed current for reversible deformation to be 27 mA. FEA simulation provides a linear
relation between the current flow (I) in each serpentine beam and portal voltage(V) as I = C'V. This model
prediction of I based on applied V serves as a virtual current monitor to set a hard condition for V ensuring
that the current is below 27 mA everywhere in the sample.

Supplementary Fig. 31a shows a simulation result of the impact of the experimental noises and
constraints on the optimization. The simulation takes the linear model (Eq. 1) with uncertainties and
constraints characterized from the experiment and evaluates the final loss f, of a 4x4 sample morphing

target shape (Fig. 3b) post 15 iterations. The distribution of f;, from simulation agrees with the experiments

11
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given 1,000 trials with a mode at 3D imaging noise éu = 0.016 mm, 12-bits PWM, and maximum current /nax
= 27 mA. Supplementary Fig. 31b shows the impact of the discrete voltage on the optimization process
without imaging noise. The final loss can reach 1.96x10-° in the case of 12-bit PWM signal. A 20-bit resolution
gives a final loss comparable to the ideal situation with continuous voltage which yields a final loss f,
~3.3 X 1075, Supplementary Fig. 31a—d shows the distribution of f, with decreasing imaging noise (6u). The
result indicates that distribution broadens as the uncertainty increases. Around 70% of f, reaches a value
less than 3 x 10~* when su = 0.016 mm, which indicates that the yielding rate of the experiment-driven

process with a maximum iteration of 15 is around 70%.

$6.3 Speed of the feedback control and optimization cycle

Supplementary Table 1 listed the detailed, representative time budget of each step during one function
evaluation for the experiment-driven optimization of a 4x4 sample. A remote computer takes an average of
0.06 s to send the updated values to the peripheral Raspberry Pi to alter the voltages in 16 PWM channels.
The algorithm pauses 0.1 s to wait for the sample to settle to its steady state upon actuation. The 3D imaging
process consists of three consecutive steps: taking images of the sample from stereo cameras (0.08 s),
detecting locations of the nodes in two images using OpenCV-Python matchTemplate function (0.11 s),
calculating the 3D-recontructed nodal displacements using OpenCV-Python reprojectimageTo3D function
(0.00 s). It takes a total of 0.19 s to get one feedback from 3D imaging. The remote computer runs the
optimization algorithm (0.00 s). Overall, the time expenditure for each loss function evaluation cycle is ~0.35
s. Based on the experimental observation, a 4x4 sample takes an average of ~2.5 min to morph a shape

from a zero-actuation initial state.

Supplementary Note S7: The abstract target curves and surfaces

The target curve in Supplementary Fig. 15c is a segment of arc, with the following expression

12
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2 2
Z=Ar*=X*-(r-c), r= L +4c _ (S8)

8c

¢=0.1L leads to the particular shape in Supplementary Fig. 15c. The target curve in Supplementary Fig. 15d
: . : : (27X : : .
is a sinusoidal function Z =-csin ) ¢=0.15L leads to the particular shape in Supplementary Fig. 15d.

The target shapes in the dynamic process in Fig. 1d, and the shapes studied in Fig. 3 and Supplementary
Fig. 32 are defined by the following functions, with Z denoting the out-of-plane coordinate, and X and Y

denoting the in-plane coordinates.

Function 1
a’ +c?
r =
2C
5 _ r’=X2-Y?—(r-c) ¥X*+X*<a’ (S9)
0 IX?+Y?2 >a

The ‘growing up’ process is simulated by a=0.5L, and c increasing from 0 to 0.3L. Shape | in Supplementary

Fig. 32 is defined by a=0.5L and ¢=0.2L.

Function 2

Z= cexp{— (S10)

(X =XV +(Y —Yc)zi

aZ

The ‘moving around’ process in Fig. 1d is simulated by ¢=0.2L, a=0.4L, and changing X; and Y. such that the
point with the maximum Z- coordinate moves along a path in the XY plane. The prescribed path in Fig. 1d
starts at (Xc, Yc) = (0, 0), moves to (0.2+/2 L, 0), moves circularly with mzo.zﬁL , and then back to
(0, 0). Shape Il in Supplementary Fig. 32 is defined by Xc= Yc=0.2L, a=0.4L, and ¢ = 0.2L.

Function 3

Z=Y cexpi- 5 . (S11)

The first a few shapes of the ‘splitting up’ process in Fig. 1d is simulated by ¢1= c>,=0.2L, a = 0.32L, and X;
13
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and Y. changing from 0 to 0.2L, with the last one denoted by shape A. Each shape is scaled such that the
maximum Z coordinate is 0.2L. The last shape of the ‘splitting up’ process (shape B) is simulated by ¢1= -c2
=0.1L, a=04L, and Xc = Yc= 0.25L. A few shapes are added between shape A and B by interpolating the
two shapes to make the process continuous. The ‘oscillating’ process in Fig. 1d is simulated by Xc= Yc=0.25L,
a=0.4L, ¢1= -c2, and c¢1 changing periodically between -0.1L and 0.1L. The target shape in Fig. 3, the same
as Shape Il in Supplementary Fig. 32, is defined by Xc= Yc=0.2L, a=0.4L, and ¢1= -co= 0.1L.

Function 4

Z=> (-1)" cexp{ - - . (S12)

NN

Shape IV in Supplementary Fig. 32 is defined by Xc= Yc=0.25L, a=0.4L,and ¢ = 0.1L.

Function 5

¢ cos(ﬂjﬂ |X|<a
Z=12 a . (S13)
0 |X|>a

Shape V in Supplementary Fig. 32 is defined by a = 0.5L and ¢ = 0.2L.

Function 6
X':£Xcos¢9+£Y, Y':—QX +£Y
2 2 2 2
E{cos[ﬁjﬂ} |X|<a ' (S14)
Z=<:2 a
0 |X1>a

Shape VI in Supplementary Fig. 32 is defined by a = 0.5L and ¢ = 0.1L.

In addition to those shapes presented in the manuscript, the serpentine-shaped mesh structures may

also be deformed to form a number of surfaces represented by the general forms of Functions 1~6, as studied

in Supplementary Note S$10.2.
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Supplementary Note S8: Experimental characterization of an array of 8 serpentine beams sample in
response to electromagnetic actuation

Supplementary Fig. 15a shows a typical sample (sample length L = 20.6 mm, sample width W =12.4 mm,
vertical serpentine length Ly = 5 mm, horizontal serpentine length Ly = 1 mm) constructed from an array of
N (N = 8) serpentine beams. The horizontal serpentines are polyimide (Pl) beams and are non-conductive.
Consequently, the sample has 8 electrical-controlled and mechanical-coupled serpentine beams. A voltage
vector (V) of size 16, applied to the peripheral ports (8 pairs of ports), controls the current density (J) in each
beam. The displacements (u) of the intersections of adjacent serpentine beams (the nodes) define the outline
of the deformed shape. For the modal-driven approach, the displacement of the " node, uj, is approximately

linearly related to the response of the " node to each j" portal voltage, Vj, as follows:

2N

u; = Z CUV]’ fori = 1, ... N.

j=1
The coupling matrix € = {C;;} fully describes this approximately linear mechanical system driven by
electromagnetic force. Supplementary Fig. 15b shows FEA and experimental characterization of the electro-
magneto-mechanical behavior for representative nodes of the array sample provided voltages in the range
of 0~2.5 V. A regression analysis on the FEA results (R?>~0.95) provides the coupling coefficients C; for a
linear-system characterization. This linear approximation enables a model-driven approach that optimizes

the portal voltages for the precursor array to deform to a mathematically-defined target shape. Supplementary

Fig. 15¢, d shows the morphing results of the sample targeting spherical and sinusoidal shapes.

Supplementary Note S9: Definition of the error between deformed and target shapes
For the deformed array of N serpentine structures, a continuous 2D curve Z>™(X) can be constructed
from the nodal positions u, (n = 0~N+1, uo = un+s = 0) via interpolation. The error between this deformed 2D

curve and the target curve Z(X) is then defined as
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1 (1w eform 2
Error:E\/Ejuz[ZDf (X)-Z(x)] dx . (S15)

Similarly, for the deformed N x N mesh structure, a continuous 3D surface Z”®™(X, Y) can be

constructed from the nodal displacements U (m = 0~N+1, n = 0~N+1, U’ =u""=u"=ul = 0) via
interpolation. The error between this deformed 3D surface and the target surface Z(X, Y) is then defined

as

Error:%\/%_[uz [ [z (%, ¥)-2Z(X, Y)] axay . (S16)

-L/2J-L/2

Supplementary Note S10: A numerical study on the feasible range of target shapes

To illustrate that the same mesh structure can be deformed to form abundant target shapes, a numerical
study is presented in this Supplementary Note on the error (see Supplementary Note 9 for the definition) of
the deformed shape for a few classes of target shapes in general form.
S$10.1 Target 2D curves

For  functions defined in the range —L/2<X<L/2 and taking the form

27X 4 X , :
Z=A]|cos - +1|+A, | cos - —1|, changing the parameters As and A; leads to various target 2D

curves. The model-driven approach can be applied for the same precursor structure to form many of these
2D curves. The error of the shapes formed by the array of 8 serpentine beams presented in Supplementary
Fig.15 is shown in the contour plot of Supplementary Fig. 21a. When the parameters A+/L and AJ/L are in a
wide range, the error is less than 2%, indicating that a number of target curves can be approximated by the
deformed structure quite accurately. This error mainly comes from the limitation on the electric current to
avoid temperature change from Joule heating (/ < 27.5mA), which limits the ability to form target shapes that
require large deformation.

The above target curves are symmetric with respect to the vertical axis at X = 0. Similarly, the asymmetric
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target 2D curves defined in the range -L/2<X<L/2 and taking the form
. [ 2nX . [ 4nX _
Z =B;sin -+ +B,sin | can also be formed by the mesh structure quite accurately when Bi/L and

B,/L are in a wide range (Supplementary Fig. 21b).
In a more general case, a target 2D curve Z(X) defined in the range —L/2<X <L/2 with

VA (iL / 2) =0 may be expressed by the Fourier series as

Z= i A |:COS(2k7LZX j+(—1)k_l} +i B, sin(2kfx ) (S17)

k=1

The prior study applies to the curves that are symmetric (Bx= 0) or asymmetric (Ax= 0) with respect to the

vertical axis at X = 0 and are dominated by the first two terms (Aw2= 0 and B2~ 0). The curves that involve

higher order terms may be formed by the structure with more serpentines (i.e. larger N). Supplementary Fig.

22 shows that the array of 16 serpentine beams may form target curves in a wide range with order Q = 4 in

the Fourier series.

$10.2 Target 3D surfaces

For functions defined in the range —L/2< X, Y <L/2 and taking the form defined by Function 1 (Eq.

(S9)) in Supplementary Note S7, changing the parameters a and c leads to various target 3D surfaces. The

model-driven approach can be applied for the same precursor structure to form many of these 3D surface.

The error of the shapes formed by the 4 x 4 mesh structure presented in the main text is shown in the contour

plot of Supplementary Fig. 23. When the parameters a/L and c¢/L are in a wide range, the error is less than

2%, indicating that a number of target surfaces can be approximated by the deformed mesh structure quite

accurately. Similar analysis is performed to the target 3D surfaces defined by Function 2~6 (Egs. (S10)-(S14))

in Supplementary Note S7, showing that the same mesh structure can be deformed to various target shapes

accurately (Supplementary Figs. 24-28).
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Supplementary Note S11: Computational cost for the model-driven approach
S$11.1 Linear system

For the NxN array of serpentine structures presented in the main text, there are 4N-1 independently
controlled port voltages Vi, V-, ..., Van.1 (One port is connected to ground and always has zero voltage). FEA
can be performed to establish the relationship between node displacements and port voltages. Applying
voltage V, at port j and keeping the voltages of other ports being zero, FEA predicts the deformation and an
approximate linear fitting of the nodal displacements gives U, :CU-VJ-. To obtain the coefficient C; for all
voltages, FEA is performed 4N-1 times, each time for j=1, 2,..., 4N-1. When all the port voltages are applied

simultaneously, the nodal displacements are the superposition of those when the voltage is applied

4N-1
individually due to linearity, i.e. U; = Z ijVj , such that the nodal displacements can be evaluated rapidly
j=1

without additional FEA. Therefore, the total number of FEA scales linearly with the system size N, which is
acceptable.
S$11.2 Nonlinear system

For a nonlinear system, the above linear superposition approach is no longer valid and the nodal
displacements are nonlinear functions of the port voltages, i.e. U, =G, (Vl,Vz,...V4N_1). Taking P values for
each voltage, P*N* times of FEA is needed to obtain the nonlinear function G;, which is astronomical (e.g.
P=5and N=2leadto M*"* ~7.8x10°%). For the 2x2 array (N = 2) presented in the manuscript, each FEA
takes about 1 hour using a workstation (twenty-core, 2.4GHz processor, 64GB memory). This difficulty in the

model-driven strategy based on computation is common for nonlinear systems.

Supplementary Note S12: Characterization of the resolution and uncertainty of 3D imaging

Supplementary Fig. 29a is a schematic illustration of the experimental setup for characterization of the

resolution and uncertainty of the 3D imaging methods. In the setup, a side camera (Webcams, ELP,
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3840x2160-pixel resolution, 30 fps) provides direct imaging of the out-of-plane deformation. Analyzing the
images via ImagedJ 1.x pipeline gives the ground-truth measurement of the nodal displacement (u,). Two
cameras (Webcams, ELP, 3840x2160-pixel resolution, 30 fps) are placed symmetrically side-by-side above
the sample to take top-view images. A calibration algorithm (OpenCV-Python calibrateCamera function) is
applied to a collection of checkerboard images (custom-made, 7x8 squares, 2x2 mm per square) to correct
lens distortion®3l. The sample nodes provide distinctive cross geometry for image registration. A customized
template matching algorithm (based on OpenCV-Python matchTemplate function) returns nodal central

coordinates ([x;, y1] and [x,, y,]) from the pair imaging in units of pixels (px). A perspective projection

matrix®4 transforms the disparity (D(x,y) =/ (x; — x2)? + (y; — y,)?) at the estimated location ([x =

(x1 +x3)/2, ¥y = (y1 +y,)/2]), to the relative depth between the camera plane and the node, Z(X, Y), as,

X1 [L 0 0 0 x
v|_[o 1 0 o y
Z|~1o o bf ol||1/D(x,]|
1 oo 0o 1 1

where f' is the focal length of the cameras, b is the distance between the two cameras. A transformation
algorithm (based on OpenCV-Python reprojectimage To3D function) implements this 2D-to-3D projection and
predicts the nodal depth in a unit of pixels (px) as u, = Z(X, Y).

A cycling test on a 4x4 sample (200 actuation cycles of shape IV in Supplementary Fig. 32, 1 Hz) provides
a statistical analysis of the 3D-reconstructed depth measurement (u,,). From the results, the mean values and
standard errors of u, from 200-cycle measurement for the 16 nodes. The distribution of measured depth (u,)
at node 1 of the actuated/unactuated state follow a Gaussian distribution with a standard deviation of
0.254/0.246. The result of analyzing the distribution of u, of all 16 nodes reveals that the stereo-imaging
method is capable of producing a measurement with a mean standard deviation, du, = 0.25 px for all nodes
(Supplementary Fig. 29b). The side camera measurement (u, ) has an uncertainty, du,,~ + 0.015.

Supplementary Fig. 29¢c shows a linear relation between u, and u,, predicted by a Deming regression on
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the experimental data as wu,, =au,+ b, where a = —-0.0664 + 2.543 X 107%,b = 12.05 + 0.038 (R2 =
0.997). The regression model defines the 3D-reconstructed nodal displacement, u(up) = Uy, (up). The nodal
displacement (1) measured by 3D imaging method has a resolution of ~0.006 mm and an uncertainty of
+0.055 mm.

The pixel form measurement of the X-Y coordinates can be converted to physical values given a reference
scale bar. Renka-Cline gridding matrix method produces an interpolated 3D surfaces from the reconstructed

nodal displacement u(X,Y) at three inserted query points between the two nearest nodes.

Supplementary Note S13: Self-evolving of a nonlinear system

A 2x2 sample (L/W = 25.0 mm, Ly = 10.0 mm), consisting of serpentine beams without any straight
segments connecting the semi-circle parts, represents a metasurface that exhibits an amplified non-linear
mechanical behavior in response to the voltage inputs. Supplementary Fig. 36 a—d shows the side-view
images of the sample deforming out-of-plane given an increasing voltage to port 1 (Fig. 4d). Centered in the
same magnetic setup, with the increase of the voltage input, the out-of-plane bending initially dominates the
structure deformation but saturates at a small displacement due to reduced arc length, such that the
serpentine beams need to overcome the tensile rigidity much larger than the bending rigidity for further
deformation. The goodness of fit (R?) of a linear regression on this response (for model-driven approach) is
0.8. In the experiment-driven approach, the optimization takes a loss function and stopping criteria of the
same form as the 4x4 sample. The experimental observation shows occasional trapping of f(V) in local

minima. A repeated optimization process overcomes the local-minimum problem in the nonlinear system.

Supplementary Note S$14: Self-evolving toward multifunction

Supplementary Fig. 39a shows the illustration of a 3x3 sample (L/W = 14.8 mm, Lywm = 2.0 mm) with 9

reflective gold patches (Au, 2 mm x 2 mm in size, 300 nm in thickness). The receiving screen (white printer
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paper sheets, 55 mm x 80 mm) is placed 40 mm above the sample in parallel to the XY-plane. A red laser
beam (~650 nm in wavelength and ~1 mm in beam diameter) and a green laser beam (~520 nm in wavelength
and ~1 mm in beam diameter) hit on the center of one patch and got reflected. Atop camera (Webcams, ELP,
3840%2160-pixel resolution, 30 fps) monitors the reflected laser spots on the receiving screen. The target
optical function is to overlap two laser spots on the receiving screen. A customized imaging analysis method
detects the centroid coordinates of the red/green laser spots as the current locations on the screen
([x7/9,y"/9], Supplementary Fig. 38a). The target structural function is to keep central nodal displacement
(us) at -0.5 mm (uz = -0.5 mm). A linear model (provided by FEA) for the sample monitors us given the
prescribed actuation. A post analysis via ex-situ 3D imaging shows an agreement between the model
prediction and the experimental results.

A loss function foui (V) (Supplementary Fig. 38b), tailored for the target multifunctionality, is a linear
combination of two parts: 1) f,.(V) evaluating the distance between two reflected spots, and 2)
fstruct (V) evaluating the central nodal error, both normalized to have an initial value of 1 following:

fmulti (V) = afopt(v) + bfstruct(V):

(x" = x9)% 4+ (y" — y9)?
2 27
(x§ —x3)" + (v5 —v5)

fopt(V) =

fstruct(V) = (usu;*us)z’
5

where [xg/g,ygfg] is the initial position of red/green spots on the screen. The two target functions are equally

weighted with a = b = 0.5. The optimization takes the same stopping criteria as the 4x4 sample.
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Supplementary Figure 1 | Schematic illustration of the fabrication process. a, Prepare a sacrificial layer
(PMMA) on a silicon wafer. b, Spin coat a bottom polyimide (PI) layer. ¢, Define the gold (Au) pattern. d, Spin
coat the top PI layer. e, Define the PI pattern. f, Undercut sacrificial layer to release the sample from the

silicon wafer.
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Supplementary Figure 2 | An analytical model and FEA study of the mechanical and thermal
behaviors of a single serpentine beam in response to electromagnetic actuation. a, Schematic
illustration (top and cross-sectional views) of the initial state (top) and actuation state (bottom) of a serpentine
beam b, Analytical model and FEA study of the relationship of the maximum out-of-plane displacement u vs.
the combination of electric current /, magnetic field B, material and geometry parameters. ¢, An analytical
model of the temperature change due to Joule heating, compared with FEA study of the temperature change
of the single serpentine beam.
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Supplementary Figure 3 | Magnetic setup for Lorentz force actuation. a, Schematic illustration of the
magnetic setup consisting of two parallel disks of Neodymium magnets (surface field ~2640 Gauss) fixed on
a 3D-printed mounting stage and spaced 55 mm apart. The setup generates a relatively uniform magnetic
field of ~0.224 + 0.016 T in the center (O) and perpendicular to the disk plane (X-direction). b, The magnetic
flux density in X-direction (By) measured by a gaussmeter (GMHT201, Apex Magnets) across the center (O)
along X-axis and Y-axis. The model-driven process considers the magnetic field to be uniform with B = 0.224
T and neglects the spatial variation.
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Supplementary Figure 4 | Experimental characterizations of the mechanical and thermal behaviors of
a single serpentine beam in response to electromagnetic actuation. a, Schematic illustration of a single
beam, placed in a magnetic field B and carrying a current density J, deforms out-of-plane by a maximum
displacement u, under an electromagnetic force Fgy = J X B. b, Optical images of a representative
serpentine beam (side view) deformed to the maximum displacement u. If exceeding the elastic limit, an
irreversible deformation v’ will retain after unloading. Scale bar, 1 mm. c, d, e, Experimental characterizations
of mechanical (c) and thermal (d) behaviors of a single beam under current-controlled electromagnetic
actuation in comparison with theoretical predictions.
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Supplementary Figure 5 | FEA strain study on the deformed single serpentine beam. a, b, Distribution
of the equivalent strain in Au (a) and the maximum principal strain in Pl (b) when applied current / = 30 mA. c,
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Supplementary Figure 6 | Characterization of the response time of a single-beam sample. A single
beam settles to steady state within ~0.07 s upon a step current actuation (applied current / = 10 mA). The
dynamic process is monitored by a side camera (Canon EOS R, 60 fps). Scale bars, 1 mm.
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Supplementary Figure 8 | Control and amplification circuits. A resistor of 50 Q represents the impedance
of the sample between the two ports. Each PWM output signal is amplified by a MOSFET (Infineon Tech,
IRF510N) using an external power supply (V,, =6 V).
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Supplementary Figure 12 | FEA of the 4X4 sample in Fig. 1d
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Supplementary Figure 14 | Distribution of the equivalent strain in Au and the maximum principal strain
in Pl for the implicit shapes presented in Fig. 1d a, 4 X4 sample. b, 8 X8 sample.
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Supplementary Figure 15 | Modeling and experimental investigations of an array of 8 serpentine
beams. a, Schematic illustration of an array of 8 serpentine beams with detailed geometries (L = 10.4 mm, W =
20.6 mm, Ly =5 mm, L, = 1 mm) specified in the exploded views of the sample and a single serpentine unit. b,
FEA and experimental investigations confirm an approximately linear relationship between representative
nodal displacements and portal voltages for the array sample. ¢, d, FEA and experimental results of the array
sample (side view) morphing into a spherical shape (c) and sinusoidal shape (d). See Supplementary Note S6
for the target shape functions. Scale bars, 2 mm.
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Supplementary Figure 16 | a, b, Distribution of the current (a), and the equivalent strain in Au and the
maximum principal strain in Pl (b) for the 5 shapes of the dynamic process presented in Fig. 2a.
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Supplementary Figure 17 | Distribution of current density for the 5 shapes of the falling droplet
imitated by the 4x4 sample in Fig. 2b.
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Supplementary Figure 18 | Distribution of the equivalent strain in Au and the maximum principal strain
in Pl for the 5 shapes of the falling droplet imitated by the 4x4 sample in Fig. 2b.
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Supplementary Figure 19 | Distribution of current density for the 5 shapes of the falling droplet
imitated by the 8 X8 sample in Fig. 2c.
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Supplementary Figure 20 | Distribution of the equivalent strain in Au and the maximum principal strain
in Pl for the 5 shapes of the falling droplet imitated by the 8 X8 sample in Fig. 2c.
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Supplementary Figure 21 | Error between the deformed an array of 8 serpentine beams and target
shapes defined as the Fourier series with the first two terms. a, b, symmetric (a) and asymmetric (b)
shapes with respect to the vertical axis at X = 0. With parameters in the region enclosed by the white dashed

lines, the normalized error is smaller than 2%.
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Supplementary Figure 22 | Error between the deformed an array of 16 serpentine beams and target
shapes defined as the Fourier series with the first four terms. a, b, Symmetric. (a).and asymmetric (b)
shapes with respect to the vertical axis at X = 0. With parameters in the region enclosed by the white dashed
lines, the normalized error is smaller than 2%.
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Supplementary Figure 23 | Error between the deformed 4X4 sample and target shapes defined by a
spherical cap. With parameters in the region enclosed by the white dashed lines, the normalized error is
smaller than 2%.
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Supplementary Figure 24 | Error between the deformed 4X4 sample and target shapes defined by a
Gaussian function. With parameters in the region enclosed by the white dashed lines, the normalized error is

smaller than 2%.
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Supplementary Figure 25 | Error between the deformed 4X4 sample and target shapes defined by a
Gaussian function with two terms. With parameters in the region enclosed by the white dashed lines, the
normalized error is smaller than 2%.
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Supplementary Figure 26 | Error between the deformed 4X4 sample and target shapes defined by a
Gaussian function with four terms. With parameters in the region enclosed by the white dashed lines, the
normalized error is smaller than 2%.
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Supplementary Figure 27 | Error between the deformed 4X4 sample and target shapes defined by a
sinusoidal function. With parameters in the region enclosed by the white dashed lines, the normalized error

is smaller than 2%.
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Supplementary Figure 28 | Error between the deformed 4X4 sample and target shapes defined by a
sinusoidal function along the diagonal direction. With parameters in the region enclosed by the white
dashed lines, the normalized error is smaller than 2%.
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Supplementary Figure 29 | Characterization of the resolution and error of 3D imaging. a, The
illustration of the 3D reconstruction characterization process. A side camera (Webcams, ELP, 3840
x 2160-pixel resolution, 30 fps) provides the measurement of nodal displacement (u,,,) as the ground
truth for 3D imaging calibration. Two cameras (Webcams, ELP, 3840x2160-pixel resolution, 30 fps)
are placed symmetrically on the top of the sample. Stereo-imaging method reconstructs the real-
time 3D shape of the sample, providing the depth measurement (u,) between nodes and cameras in
pixel units. The Deming regression models the relation between u, and u,, that defines the 3D-
reconstructed nodal displacement (u(u,)). ¢, The depths (u,) of the 16 nodes are measured by the
stereo-imaging method when a 4X4 sample is under a cyclic actuation (200 cycles of shape IV in
Supplementary Note S7). Both the actuated and unactuated distribution of measured depth (u,)
follow a Gaussian distribution. The result of analyzing the distribution of u, of all 16 nodes reveals
that the stereo-imaging method is capable of producing a measurement with a mean standard
deviation of 0.25. d, The Deming regressor models the relation between u, and uy,, providing the
prediction for 3D-reconstructed displacement u(up).
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Supplementary Figure 30 | Typical descent of loss function over optimization iterations. a, b, ¢, For a
4x4 sample morphing into Shape | (a), lll (b), IV (c), which are shown in Supplementary Note S7, the loss
function f(V)(with an initial value f(V = 0)in the range of 0.05-0.35) descends by ~99.5% to a steady state in
5-15 iterations. Each iteration takes 34 function evaluations given 32 input ports.
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Supplementary Figure 31 | Simulation of the impact of experimental noises and constraints on the
optimization process. a, The comparison between simulation (3D imaging noise éu = 0.016 mm, 12-bits
PWM, maximum current /., = 27 mA) and the experimental results of a 4 X4 sample morphing into a target
shape (Fig. 3b) from 1,000 trials. b, The simulation results of f (V) with n-bit PWM voltage compared to the
noise-free simulation with continuous voltage control. c¢-f, The distribution of the final loss f, after 15
iterations over 1,000 simulation trials morphing into the same target shape (Fig. 3b) with a decreasing 3D
imaging uncertainty (6u) of 0.024 mm (c), 0.016 mm (d), 0.008 mm (e) and 0.004 mm (f).
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Supplementary Figure 32 | Experiment-driven self-evolving process in comparison with the model-
driven approach. a, Target implicit shapes and optical images of the experiment-driven morphing results of
a 4X4 sample. b, 3D reconstructed surfaces overlaid with contour plots of the minimized errors (e) and c,
histograms of the minimized errors for model-driven and experiment-driven outputs. Scale bars, 5 mm.
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Supplementary Figure 33 | Schematic illustration and formula of 6 classes of implicit shapes.
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Supplementary Figure 34 | Distribution of current density for the 6 implicit shapes presented in Fig. 3b
and Supplementary Fig. 32.
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Supplementary Figure 35 | Distribution of the equivalent strain in Au and the maximum principal strain
in Pl for the 6 abstract implicit shapes presented in Fig. 3b and Supplementary Fig. 32.
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Supplementary Figure 36 | The optical images of a 2X2 sample with modified serpentine design for
amplified nonlinear mechanical behavior in response to a range of actuation voltages. a, b, ¢, d, The
side-view images of the sample deforming out-of-plane given an increasing voltage to port 1 (Fig. 4d) given
V,=0V(a), 0.25V (b), 2.75 V (c), and 3 V (d). The rate of change of u, decreases as the actuation voltage
increases. Scale bar, 5 mm.
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Supplementary Figure 37 | Self-evolving shape morphing toward semi-real-time shape learning.
a, Schematic illustration of a duplicated stereo-imaging setup enabling a semi-real-time control of a 4x4
sample simulating the dynamic shape shifting of a palm surface with 4x4 markers. b, Experimental results
of the continuous semi-real-time morphing of the palm surface with the thumb moving up. ¢, Morphing
results of representative frames from a recording of hand making eight gestures related to different fingers
moving. Scale bars, 5 mm.
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Supplementary Figure 38 | A 3X 3 sample self-evolving to achieve an optical and a structural function
simultaneously. a, Representative optical images of the laser spots on the receiving screen. The target
optical function is to overlap two laser spots on the receiving screen. A customized imaging analysis method
detects the centroid coordinates of the red/green laser spots as the current locations on the screen
([x™/9,y7/9] . b, A typical descent of loss functions over optimization iterations. The optimized loss function
(fmui(V)) is a linear combination of two parts: 1) an optical loss function f,,(V) that evaluates the distance
between the center of the two laser spots; Il) a structural loss function f..(V) that evaluates the central
node displacement error. Scale bar, 5 mm.
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Supplementary Figure 39 | Allowed shape (structural-function) configurations of a 3X3 sample (Fig.
5¢, d) when enforcing only the optical function. a, Allowed values of the central nodal displacement when
enforcing only the optical function for three distinctive incident beam angles. b, Model predictions, and ex-situ
3D imaging results of the sample (side-view) overlapping the laser spots and in the configurations with the
highest, lowest, and target central displacement.
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3D imaging

Update Wait for Optimizat
. Steady . Sum
Actuation S ion
tate Stereo Template Projection and
Imaging Matching Reconstruction
0.06+0.01s | 0.1+0.05s | 0.08+0.04s | 0.11+0.05s 0.00s 0.00s 0.35+0.15s

Supplementary Table 1 | Function evaluation time profiling. An evaluation of the time budget of each
step during the experiment-driven optimization of a 4 X4 sample is presented. A function evaluation takes on
average 0.35 s to complete.
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