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A. Methodology. Our online cluster search methodology follows our earlier works refer-
enced in the main paper (N.F. Johnson, R. Leahy, N. Johnson Restrepo, N. Velasquez, M.
Zheng, P. Manrique, P. and S. Wuchty. Hidden resilience and adaptive dynamics of the
global online hate ecology. Nature 573, 261 (2019); N.F. Johnson, M. Zheng, Y. Vorobyeva,
A. Gabriel, H. Qi, N. Velasquez, P. Manrique, D. Johnson, E. Restrepo, C. Song, S. Wuchty,
S. New online ecology of adversarial aggregates: ISIS and beyond. Science 352, 1459 (2016)),
but now looking within and across multiple social media platforms. While the method can in
principle be repeated for any topic, we focus in this paper on forms of hate and hate-speech
defined as either (a) content that would fall under the provisions of the United States’ Code
regarding hate crimes or hate speech according to Department of Justice’s guidelines, or
(b) content that supports or promotes Fascist ideologies or regime types (i.e., extreme na-
tionalism and/or racial identitarianism). On-line communities promoting hate have become
prevalent globally and are being linked to many recent violent real-world attacks, including
the 2019 Christchurch shootings. We observe many di↵erent forms of hate adopting similar
cross-platform tricks. Our research avoids needing any information about individuals, just
as information about a specific molecule of water is not needed to describe the bubbles (i.e.
clusters of correlated molecules) that form in boiling water. We define a hate cluster for
practical purposes in this paper, as a cluster (e.g., Facebook fan page, VKontakte club) in
which 2 out of 20 of its most recent posts at the time of classification align with the above
definition of hate. Whether a particular cluster is strictly a hate philosophy, or simply shows
material with tendencies toward hate, does not alter our main findings. Links between clus-
ters are hyper-links (see, for example, Fig. S1). Our hate cluster network analysis starts from
a given hate cluster A and captures any hate cluster B to which hate cluster A has shared an
explicit cluster-level link. We developed software to perform this process automatically and,
upon cross-checking the findings with our manual list, were able to obtain approximately 90
percent consistency between manual and automated versions. Figure S1 shows an example
of clusters and a wormhole between them, from our analysis.

Figure S2 shows the behavior within a universe (i.e., within a given platform, VKontakte)
including the individual users. Gephi’s ForceAtlas2 layout in Fig. S2 simulates a physical
system in which nodes (clusters) repel each other while links act as springs. It is color
agnostic, i.e. the color segregation emerges spontaneously and is not in-built. Nodes that
appear closer to each other have local environments which are more highly interconnected
while nodes that are far apart do not. Each cluster (VKontakte Group or Page) receives
directly the feed of narratives and other material from that Group or Page and all members
(fans) can engage in the discussions and posting activity. The visually explosive nature is
similar across scales (i.e. akin to Fig. 2B of the main paper) which suggests that parts of
the multiverse that are as-yet unknown or yet to be created, will exhibit similar behaviors.
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Figure S1: Example of clusters and links between clusters on di↵erent platforms, i.e.
wormhole between universes.

The LDA (Latent Dirichlet Allocation) method is ‘a generative statistical model that al-
lows sets of observations to be explained by unobserved groups that explain why some parts of
the data are similar. For example, if observations are words collected into documents, it posits
that each document is a mixture of a small number of topics and that each word’s presence is
attributable to one of the document’s topics. LDA is an example of a topic model and belongs
to the machine learning toolbox and in wider sense to the artificial intelligence toolbox.’ We
recommend this Wikipedia entry https : //en.wikipedia.org/wiki/Latent Dirichlet Allocation
from which the quote comes, for useful links. We also refer to a recent paper from re-
searchers at Ghent University and Twitter, available at arXiv:1909.01436v2, titled ‘Discrim-
inative Topic Modeling with Logistic LDA’, by I. Korshunova, M. Fedoryszak, H. Xiong,
L. Theis, for a nice summary of new advances and analysis, as well as references therein.
The coherence score is a way of measuring the alignment of the words within an identified
topic. The overall coherence score is just a simple arithmetic mean of all the per-topic co-
herences. Cv, the coherence score, is based on a sliding window, one-set segmentation of
the top words and an indirect confirmation measure that uses normalized point-wise mu-
tual information (NPMI) and the cosine similarity. Essentially, it comprises collections of
probability measures on how often top words in topics co-occur with each other in exam-
ples of the topics. The following is an example which specifically uses this Cv measure:
https://ieeexplore.ieee.org/document/8259775. We refer to is for a longer-form ex-
planation and discussion of Cv.
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Figure S2: Detailed snapshot shows individuals’ membership in hate clusters on a single
day within a single universe of anti-U.S. hate during the rise of ISIS (January 24,
2015). Red clusters are those that subsequently were shut down, while green clusters
were not. White dots are individual users. The intra-universe map has similarly
explosive appearance to large-scale multiverse map in Fig. 2B of the main paper.
User information is not publicly available for all platforms, hence it is not included in
figures in the main paper.

B. Theoretical description of bilateral wormhole engineering (Figs. 4A,B,C main
paper). This material draws heavily from the reference in the main paper: D.J. Ashton, T.C.
Jarrett and N.F. Johnson, E↵ect of Congestion Costs on Shortest Paths Through Complex
Networks, Phys. Rev. Lett. 94, 058701 (2005). We refer to that paper for demonstrations
of good agreement between the core mathematics and approximations that we use, and
numerical simulations – and hence numerical justifications for the approximations that we
use. Each of the n nodes in a long chain (technically, a ring though a long chain also su�ces)
is connected to its nearest neighbors by a link of unit length. These links are directed in
the ‘directed’ model, and undirected in the ‘undirected’ model. With a probability p any
node can be attached to the central hub by a link of length 1

2 . The links to the hub are
always undirected. For both the directed and undirected models, explicit expressions can be
derived for the probability P (`,m) that the shortest path between any two nodes on the ring
is `, given that they are separated around the ring by length m. Summing over all m for a
given ` and dividing by (n � 1) yields the probability P (`) that the shortest path between
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two randomly selected nodes is of length `. The average value for the shortest path across
the network is then ¯̀ =

Pn�1
`=1 `P (`). For the undirected model, the expressions are more

cumbersome because there are more paths with the same length. However, defining nP (`) ⌘
Q(z, ⇢) where ⇢ ⌘ pn and z ⌘ `/n, there is a simple relationship between the undirected
and directed models in the limit n ! 1 with p ! 0, i.e. Qundir(z, ⇢) = 2Qdir(2z, ⇢). The
models only di↵er in this limit by a factor of two: z ! 2z, with z now running from 0 to
1/2. The results which follow were obtained by generalizing this procedure. We add a cost c
every time a path passes through the central hub. This cost c is expressed as an additional
path-length, however it could also be expressed as a time delay or reduction in flow-rate
for transport and supply-chain problems. We have in general considered three cases: (1)
constant cost c where c is independent of how many connections the hub already has, i.e. c
is independent of how well-used the hub is; (2) linear cost c where c grows linearly with the
number of connections to the hub, and hence varies as ⇢ ⌘ np; (3) nonlinear cost c where c
grows with the number of pairs connected directly across the network, and hence varies as
⇢2. For a general, non-zero cost c that is independent of ` and m, we can write the following
for a network with directed links:

P (`, `  c) =
1

n� 1
(1)

P (` < m, ` > c) = (`� c)p2(1� p)`�c�1 (2)

P (` = m, ` > c) = 1� p2
`�c�1X

i�c=1

(i� c)(1� p)(i�c)�1 (3)

Performing the summation gives:

P (` = m, ` > c) = (1 + (`� c� 1)p)(1� p)`�c�1 (4)

The shortest path distribution is hence:

P (`) =

8
<

:

1
n�1 8 `  c
1

n�1

⇥
1 + (`� c� 1)p
+(n� 1� `)(`� c)p2

⇤
(1� p)`�c�1 8 ` > c

Using the same analysis for undirected links yields a simple relationship between the directed
and undirected models. Introducing the variable � ⌘ c

n with z and ⇢ as before, we may
define nP (`) ⌘ Q(z, �, ⇢) and hence find in the limit p ! 0, n ! 1 that Qundir(z, �, ⇢) =
2Qdir(2z, 2�, ⇢). For a fixed cost, not dependent on network size or the connectivity, this
analysis is straightforward. For linear costs, dependent on network size and connectivity
and for N = 1 central hub, we can show that there exists a minimum value of the average
shortest path ¯̀as a function of the connectivity to the central hub. Hence there is an optimal
number of connections to the central hub, in order to create the minimum possible average
shortest path. We denote this minimal path length as ¯̀⌘ ¯̀|min. Such a minimum is in stark
contrast to the case of zero cost per connection, where the value of ¯̀ would just decrease
monotonically towards one with an increasing number of connections to the hub. We now
calculate the average shortest path, ¯̀=

Pn�1
`=1 `P (`), which yields:

¯̀=
(1� p)n�c

⇥
3 + (n� 2� c)p

⇤

p2(n� 1)
+

p
⇥
2� 2c+ 2n� (c� 1)(c� n)p

⇤
� 3

p2(n� 1)
+

c(c� 1)

2(n� 1)
. (5)
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An analytic expression for ¯̀|min can be obtained by setting the di↵erential of Eq. (5) equal to
zero. If n is very large, one can introduce a higher cost without compromising the minimal
shortest path ¯̀|min since in general the nodes are already much further from one another. We
can also investigate how many connections we should make for a given cost and network size,
in order to achieve the minimum possible shortest path ¯̀|min. This is obtained by setting the
di↵erential of Eq. (5) equal to zero and solving for p. To gain insight into the underlying
physics, we now make some approximations to the exact analytic expressions. For large n,
or more importantly large n � c, the term (1 � p)n�c ! e�⇢ in Eq. (5). Provided that the
cost per connection to the hub is not too high, the region containing the minimal shortest
path ¯̀|min will be at a reasonably high ⇢. Hence we can neglect the exponential term and
di↵erentiate to find the minimum value of ¯̀ with c = knp = k⇢. It is reasonable to assume
that at fixed k, optimal ⇢ will increase with n like nx where 0 < x  1. In particular, one

obtains di↵usive behavior whereby x ⇠ 1/2. Specifically, ⇢ ⇡
q

2n
k . For a large network (i.e.

large n), we have therefore obtained a simple relationship between the number of connections
one should introduce in order to create the minimal average shortest path between any two
nodes in the network, and the cost per connection to the hub. Now we briefly turn to consider
a specific yet physically reasonable example of non-linear costs, in which the costs are taken
to depend on the number of pairs which are connected via the hub. In particular, we use
c = k(np)2. We obtain the analytic relationship ⇢ ⇡ 3

p
n
k which is the non-linear equivalent

of the above result. Obviously, more accurate expressions can be obtained since we know the
complete form of the analytic solution – however these are too cumbersome algebraically to
be presented here. For linear costs, the lowest value of ¯̀ one can achieve is ¯̀|min ⇡

p
8kn.

For non-linear costs, the minimal shortest path ¯̀|min ⇡ 3
p
27kn2. These last results show

that the minimal shortest path ¯̀|min across the network grows like n
1
2 when we impose linear

costs while it grows like n
2
3 when we put a cost on the number of direct connections between

nodes made via the hub (i.e. non-linear costs). Corresponding results for the undirected
model can be easily obtained from the equations for the directed model. For example for
linear costs c = knp and undirected links, we obtain ¯̀|min ⇡

p
4kn and ⇢ ⇡

p
n
k for the

minimal shortest path and the optimal connectivity. The present analysis can be extended
to multiple hubs, N � 2. For simplicity, we focus here on the specific example of constant
costs and N = 2 (i.e. hub P, with nodes connected to it with probability p and hub Q, with
nodes connected to it with probability q) where the cost associated with each hub has value
cp and cq, with cp � cq. The cost for using both hubs is assumed to be infinite. We first
consider what happens when ` > cp � cq. In this case, both hubs may be used and we may
therefore write:

P (` < m) =PP (` < m, ` > cp)
⇥
1�

`�cq�1X

i�cq=1

PQ(i < m, i > cq)
⇤

+PQ(` < m, ` > cq)
⇥
1�

`�cp�1X

i�cp=1

PP (i < m, i > cp)
⇤

�PP (` < m, ` > cp)PQ(` < m, ` > cq) (6)

where PP (` < m, ` > cp) and PQ(` < m, ` > cq) are understood to be P (` < m, ` > c) from
the single-hub-with-costs case for probabilities p and q respectively. Substituting Eq. (2)
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into the first term of Eq. (6) and performing the summation yields:

PP (` < m, ` > cp)
⇥
1�

`�cq�1X

i�cq=1

PQ(i < m, i > cq)
⇤

= (g0pq + g1pq`+ g2pq`
2)(apaq)

`�1 (7)

where

ap = 1� p

aq = 1� q

g0pq = (1� p)�cp(1� q)�cqp2cp((cq + 1)q � 1)

g1pq = (1� p)�cp(1� q)�cqp2(1� (cp + cq + 1)q)

g2pq = (1� p)�cp(1� q)�cqp2q .

An equivalent substitution and summation performed on the second term in Eq. (6) yields
the same answer but with labels p and q interchanged. The third term, after substitution
and summation, yields:

PP (` < m, ` > cp)PQ(` < m, ` > cq)

= (h0 + h1`+ h2`
2)(apaq)

`�1 (8)

where

h0 = (1� p)�cp(1� q)�cqp2q2cpcq

h1 = �(1� p)�cp(1� q)�cqp2q2(cp + cq)

h2 = (1� p)�cp(1� q)�cqp2q2 .

Substitution of these individual terms into Eq. (6) yields:

P (` < m) = (g00 + g01`+ g02`
2)(apaq)

`�1 (9)

where g0i = gipq + giqp � hi. To calculate the full probability distribution for the case
` > cp � cq we now only require P (` = m):

P (` = m) = 1�
cpX

i=cq+1

PQ(i < m)�
`�1X

i=cp+1

P (i < m) (10)

where PQ(i < m) is the single-hub-plus-costs distribution for a hub with probability q and
P (i < m) is given by Eq. (9). We define the following functions:

fx(a, n) =
n�1X

i=1

ixai�1

f̃x(a, n1, n2) = fx(a, n1)� fx(a, n2) .

We then substitute PQ(i < m) and P (i < m) into Eq. (10) yielding:

P (` = m, ` > cp) = 1� q2

(1� q)cq
⇥
f̃1(aq, cp + 1, cq + 1)

�cqf̃0(aq, cp + 1, cq + 1)
⇤
�

⇥
g00f̃0(apaq, `, cp + 1)

+g01f̃1(aqap, `, cp + 1) + g02f̃2(apaq, `, cp + 1)
⇤

. (11)
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We now obtain the final distribution by performing the sum over m:

P (`, `  cq) =
1

n� 1
(12)

P (`, cq < `  cp) =
1

n� 1

⇥
1 + (`� cq � 1)q

+(n� 1� `)(`� cq)q
2
⇤
(1� q)`�cq�1 (13)

P (`, cp < `) =
1

n� 1


1� q2

(1� q)cq
⇥
f̃1(aq, cp + 1, cq + 1)

�cqf̃0(aq, cp + 1, cq + 1)
⇤
�

⇥
g00f̃0(apaq, `, cp + 1)

+g01f̃1(aqap, `, cp + 1) + g02f̃2(apaq, `, cp + 1)
⇤

+
⇥
(n� 1� `)(g00 + g01`+ g02`

2)(apaq)
`�1

⇤�
. (14)

These results were used directly to produce the figure and curve shown in
Fig. 4C (top) for one platform (universe 1) with one long chain (i.e. one ring)
having separate sets of wormholes to a second platform (universe 2) and a third
platform (universe 3).

In what follows, we consider the other example in Fig. 4B,C (bottom) of the main paper,
of two distinct platforms (universe 1 and universe 2) having separate sets of wormholes
to the same third platform (universe 3). Interconnections between the nodes from di↵erent
platforms are not considered. The only coupling between the two platforms is due to the cost
of using the third platform (referred to here as the central hub). Since both the platforms’
rings will tend to optimize their average path lengths, it is interesting to see how the optimal
number of connections and the minimum path length changes due to the central hub being
shared. Let two platform rings A and B have sizes and connecting probability of nodes
n, nB, p and pB respectively. Considering platform ring A, we start from the expression for
a simplified form of the average path length:

l̄ ⇡ p (2� 2c+ 2n� (c� 1) (c� n) p)� 3

p2 (n� 1)
+

c (c� 1)

2 (n� 1)
(15)

In this case, the cost depends on the connectivity of both platforms as the congestion is
caused by the connections from both the platforms, c ⌘ c (p, pB). For fixed network sizes n
and nB, l̄ depends on two variables p and pB. To find the local maxima or minima, we need
to locate the critical points by solving the following simultaneous equations as we require
the tangent plane to be horizontal:

@

@p
l̄ (p, pB) =

@

@pB
l̄ (p, pB) = 0 (16)
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where

@

@p
l̄ (p, pB) = 0

=
@

@p


p (2� 2c+ 2n� (c� 1) (c� n) p)� 3

p2 (n� 1)
+

c (c� 1)

2 (n� 1)

�

= �p
⇥
2� 2c+ 2n�

�
c2 � cn� c+ n

�
p
⇤

+p2

�2

@c

@p
�

�
c2 � cn� c+ n

�
� p (2c� n� 1)

@c

@p

�
+ 6 +

p3

2
(2c� 1)

@c

@p

= �p (2� 2c+ 2n)� 2p2
@c

@p
� p3 (2c� n� 1)

@c

@p
+ 6 +

p3

2
(2c� 1)

@c

@p
(17)

Rewriting in terms of the scaled connectivity, ⇢ = np:

2⇢

n
(1� c+ n)� 6 =

@c

@p

⇢3

n2

✓
n+

1

2
� c� 2n

⇢

◆
(18)

In the limit n � c, ⇢ � 1,

@c

@⇢
=

2n

⇢2
(19)

Similarly we have,

@

@pB
l̄ (p, pB) = 0

=
@

@pB


p (2� 2c+ 2n� (c� 1) (c� n) p)� 3

p2 (n� 1)
+

c (c� 1)

2 (n� 1)

�

=
1

2
(2c� 1)

@c

@pB
+

1

p


�2

@c

@pB
� p

✓
2c

@c

@pB
� n

@c

@pB
� @c

@pB

◆�

=
@c

@pB

✓
2c� 1

2
� 2

p
� 2c+ n+ 1

◆

c ⇡ n� 2n

⇢
(20)

The above analysis only strictly holds true for ⇢ � 1, n � c, but should be a reasonable
first approximation otherwise. The two networks should be of similar sizes for this optimal
condition. Since A and B are just dummy labels for the networks, by symmetry we get a
similar equation for network B.

@c

@⇢B
=

2nB

⇢2B
(21)
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When the hub is used by a single network, the location of the minimum of average path
length is obtained from dc

d⇢ = 2n
⇢2 .

For a general cost, c = k⇢↵ + q⇢✓B, the optimum number of connections for the individual
networks remains unchanged. However, the optimal average path length l̄ does change. We
expect it to increase as the additional cost due to the other network causes path lengths
l  c to be much higher and these do not use the hub, thus causing the overall l̄ to increase.

Consider the linear case: for optimized networks, we have

c = k⇢+ q⇢B

= k

r
2n

k
+ q

r
2nB

q

=
p
2
⇣p

kn+
p
qnB

⌘
(22)

Consider the case when k = q and the network are of same size n. Substituting the optimal
number of connections and cost when optimized, and considering the dominant terms, we
get:

l̄ ⇡ 2n

⇢
+ c

=
p
2nk +

p
2nk +

p
2nBq

=
p
2nk +

p
2nk +

p
2nk

=
p
18nk (23)

Thus the optimal path length has increased to l̄ ⇡
p
18nk as compared to l̄ ⇡

p
8nk when

the hub is used by a single ring and star network. The above result generalizes to multiple
hubs, for linear cost functions and N networks with size n:

l̄ ⇡
p
2nk + (N)

p
2nk

=
q

(N + 1)2 2nk

(24)

Strictly speaking, we require n � c for our approximations to be accurate, hence the addition
of many hubs might result in the cost being too high for the result to be accurate. One
important aspect of the result perhaps is that while the optimal number of connections does
not change, the optimal path length does due to the hub being used by other platforms.
This feature can be used to detect any platforms that may be using a particular hub without
wanting to be detected. Here, since the inter-network connections do not exist and the nodes
of this ‘dark’ platform only connect between themselves, it can only be detected through its
influence on the cost associated with the hub. Conversely, if it is known that a platform is
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using a given hub, given its impact on the path length of other platforms using that hub,
the nature of its cost function can be estimated. While the optimal probability remains the
same, the path length does increase. This is expected as the paths with a higher cost than
the separation of nodes, are avoided and this leads to a higher average path length when the
costs are higher.

We can similarly consider a series of platforms (rings) with the outer rings using the
inner rings and hub as the renormalized hub. Since our result holds only when n ⌧ c, the
assumption breaks down for higher rings when the number of nodes are considered equal for
all rings. Therefore we consider the case ni = ni and a linear cost function. To check if the
assumption holds, consider a general xth ring,

cx = k⇢xl̄x�1

= k⇢x

r

4nx�1k
q

4nx�2k
p

4nx�3k.............

= k⇢x (4k)
1
2+

1
4+

1
8+

1
16+.....+ 1

2x�1 n
x�1
2 n

x�2
4 n

x�3
8 ...............n

1
2x�1

= k⇢x (4k)
1� 1

2x�1 n
Px�1

j=1
x�j

2j

= k⇢x (4k)
1� 1

2x�1 n(x�2+21�x) (25)

The dominant term is the one in n for any higher x, cx ⇡ nx

n2 and thus nx � cx hold true for
arbitrary higher x. The summation used is evaluated below.

Let Sn = 1
2 +

1
4 +

1
8 +

1
16 + .....+ 1

2x�1 =
Px�1

j=1
1
2j = 1� 1

2x�1

x�1X

j=1

x� j

2j
=

x�1X

j=1

x

2j
�

x�1X

j=1

j

2j

= xSn �
x�1X

j=1

j

2j
(26)

To evaluate the sum, let

Sm =
1

21
+

2

22
+

3

23
+

4

24
+ ........

x� 1

2x�1

2Sm = 1 +
2

21
+

3

22
+

4

23
+ ........

x� 1

2x�2

2Sm � Sm = Sm = 1 +
1

21
+

1

22
+

1

23
+ .....+

1

2x�2
� x� 1

2x�1

= 1 + Sn �
1

2x�1
� x� 1

2x�1

= 1 + Sn �
x

2x�1
(27)

Substituting yields,
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x�1X

j=1

x� j

2j
= xSn �

⇣
1 + Sn �

x

2x�1

⌘

= x� 2 +
1

2x�1
(28)

Thus the optimized path length of the mth ring which uses inner rings and the central hub
as a renormalized hub for cost function which depends linearly on the number of connections
and the path length of the inner ring is:

l̄m =
q

4knm

p
4knm�1....... = (4k)1�

1
2m n(m�1+2�m) (29)

The main conclusions are therefore as follows:

(1) Even though the hub is being used by other networks, the number of connections required
by a platform network to reach its optimal average path length does not change. However,
the value of the optimal path length does change. Thus any deviance in optimal path length
from the expected value can help in inferring the presence of another network that might
otherwise go undetected.

(2)The optimized path length of the mth ring in a series of rings with nm = nm which
uses inner rings and the central hub as a renormalized hub for the cost function and which
depends linearly on the number of connections and the path length of the inner ring, is given
by:

l̄m = (4k)1�
1

2m n(m�1+2�m) (30)
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C. Theoretical description for manipulating outbreak of support surrounding
malicious matter (Figs. 4D,E,F main paper). This material draws heavily from the
reference given in the main paper: P.D. Manrique, M. Zheng, Z. Cao, E.M. Restrepo, N.F.
Johnson, Generalized gelation theory describes onset of online extremist support, Phys. Rev.
Lett. 121, 048301 (2018). We refer to that paper for demonstrations of good agreement
between the core mathematics and approximations that we use, and numerical simulations –
and hence numerical justifications for the approximations that we use. We start with a set of
rate equations for the concentration ck(t) of small clumps (i.e. microscopically small clusters)
of individuals size k (k = 1, 2, ...). These small clumps of individuals may be anywhere
online, in some informal community setting (e.g. some people discussing another topic
and/or on another platform). As yet, these clumps of individuals have not yet aggregated
(i.e. ‘gelled’) into a large observable malicious matter cluster (e.g. a Facebook Page focused
on hate). When it does, that large cluster can be called a gel that emerges out of this soup
of microscopic clumps – and represents one of the observable Facebook Pages (clusters).
We include heterogeneity among the interacting elements (small clumps of size k = 1) and
consider that this heterogeneity ultimately dictates the evolution of the aggregation process.
A hidden variable x that we for simplicity call ‘character’, is randomly assigned to each
element taken from a given distribution q(x). The interaction is described in terms of the
similarity or dissimilarity of the interacting elements. We define the similarity Sij between
element i and element j as Sij = 1 � |xi � xj|, so that elements with alike character have
a high similarity and otherwise for a pair of elements with unlike character. We consider
that the probability of aggregation for any two individuals i and j is given by C = Sij. Our
definition also recognizes the opposite mechanism which tends to form clumps of dissimilar
individuals, where the aggregation probability between i and j is C = 1� Sij. The random
case is recovered in the limit where the aggregation probability is independent of x, which
is C = 1. The heterogeneous aspect of the aggregation process is transferred by means of
a mean-field probability for aggregation. For example, for a uniform character distribution
q(x), the probability density function (PDF) of the similarity y = Sij, for homophily is
f(y) = 2y and hence the mean-field aggregation probability F , becomes:

F =

Z 1

0

yf(y)dy = 2/3. (31)

By contrast, for dissimilarity defining z = 1� Sij, the PDF f(z) = 2(1� z) resulting into a
mean-field aggregation probability F , of:

F =

Z 1

0

zf(z)dz = 1/3. (32)

The homogeneous limit (i.e. random limit) occurs when y = 1 (or z = 0) and the diversity
distribution is a Dirac delta which yields F = 1. In general, F determines the likelihood for
any pair of elements i and j to merge into a new clump at a given timestep t. With this
in mind we can rewrite a set of equations for the number of clumps of size k (nk), for the
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heterogeneous system as:

ṅk(t) = �2F
knk

N2

1X

r=1

rnr +
F

N2

kX

r=1

rnr(k � r)nk�r, k � 2 (33)

ṅ1(t) = �2F
n1

N2

1X

r=1

rnr, k = 1, (34)

where N is the subpopulation from which a particular flavor of future Facebook Page (gel)
might emerge if gelation occurs. The first term represents the population of clumps of size k
that merge with other clumps, while the second term is the population of smaller clumps that
merge to form clumps of size k, consisting of the well-known product kernel. By considering
N =

P1
r=1 knk, the equation can be immediately solved and the expression for the evolution

number of individual elements is:
n1(t) = Ne�

2F
N t, (35)

where we have assumed that initially the system is comprised by individual elements only,
(n1(0) = N). This yields:

n2(t) = Fte�
4Ft
N . (36)

and the general expression for any k � 2 is found to be:

nk(t) =
1

k!

✓
k

N

◆k�2

(2Ft)k�1 e�
2kF
N t. (37)

For finite systems at some point into the dynamics a finite non-negligible fraction of the total
population condenses into a single large cluster. This phenomena is known as gelation and
divides the dynamics of the system. Each hate Facebook Page is a large cluster which we can
call a gel. After the gel is formed, the moments of the size distribution is decomposed into
the small clumps (or solution) and the largest gel cluster (Facebook page) in the following
way:

Mj =
X

k�1

kjnk =
X

sol

kjnk + (kjnk)gel. (38)

The importance of this decomposition becomes evident when analyzing the zeroth moment,
M0 =

P
k�1 nk, which provides the number of clumps of any size. By looking at its first

derivative we find:

dM0

dt
=

X

k�1

dnk

dt

= �2F
X

k

knk

N
+

F

N2

X

k

kX

i+j

(ini)(jnj)

= �F, ) M0(t) = N � Ft. (39)

The solution for the zeroth moment becomes negative when t > N/F which is problematic
since M0 gives the total number of clumps present. This problem is solved by using, above
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the gel point,
P

k�1 knk = N � C, where C is the size of the gel cluster (hate Facebook
page). With this correction the derivative of the zeroth moment becomes:

dM0

dt
= �2F

N
(N � C) +

F

N2
(N � C)2

=
F

N
(N � C)

✓
N � C � 2N

N

◆
= � F

N2
(N � C)(N + C)

=
F

N2

�
C2 �N2

�
. (40)

This indicates that the number of clumps stops decreasing when the gel reaches the system
size N . The appearance of the gel cluster is mathematically manifested as a singularity in
the second moment of the size distribution. The evolution of the second moment is given by:

dM2

dt
=

X

k�1

k2dnk

dt
. (41)

and hence:

dM2

dt
=

X

k�1

✓
k

N

◆2

F
X

i+j=k

inijnj �
X

k�1

k3nk
2F

N

=
X

i�1
j�1

(i+ j)2
F

N2
inijnj �

X

k�1

k3nk
2F

N

=
X

i�1
j�1

�
i3jninj + 2i2j2ninj + ij3ninj

� F

N2
�

X

k�1

k3nk
2F

N

=
X

i�1
j�1

�
i2ni

� �
j2nj

� 2F
N2

+
�
i3nijnj + inij

3nj

� F

N2
�

X

k�1

k3nk
2F

N

=
X

i�1
j�1

�
i2ni

� �
j2nj

� 2F
N2

+
X

k�1

k3nk
2F

N
�

X

k�1

k3nk
2F

N

=
X

i�1
j�1

�
i2ni

� �
j2nj

� 2F
N2

= M2
2

2F

N
, (42)

which gives a closed di↵erential equation for the second moment of the size distribution. The
solution for the initial condition where all clumps are of size one (M2(0) = N), is:

M2(t) =

✓
1

N
� 2Ft

N2

◆�1

, (43)

which has a singularity at the time tc = N/2F , showing the point where the gel transition
takes place. This critical time depends on the mean-field aggregation probability F and
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hence in the formation process. For a uniform character distribution, unlike clusters (dis-
similarity) are slower to be formed and hence the transition occurs at a later time than alike
cluster formation (homophily). Random clusters are the quickest to form since they have the
maximum mean-field aggregation probability per timestep (F = 1). The expression for the
evolution of the gel size (e.g. hate Facebook Page) is obtained by means of the exponential
generating function E(y, t) ⌘

P
k�1 knkeyk. Hence:

@E
@t

=
X

k�1

k
@nk

@t
eyk

= �2F

N

X

k

k2nke
yk +

F

N2

X

i�1

X

j�1

(i+ j)inijnje
yk

= �2F

N

X

k

k2nke
yk +

F

N2

X

i

i2nie
yi
X

j

jnje
yj +

F

N2

X

i

inie
yi
X

j

j2nje
yj

=
2F

N2
E @E
@y

� 2F

N

@E
@y

=
@E
@y

2F

N

✓
E
N

� 1

◆
. (44)

This is known as the inviscid Burgers equation which is the simplest nonlinear hyperbolic
equation and can be solved by the method of characteristics. For this type of partial di↵er-
ential equation, the characteristics are straight lines in the y-t plane where E is constant and
have slope ↵(1 � E 0), where for simplicity we have defined ↵ = 2F/N and E 0 = E/N . The
equation of motion for y along the characteristic is therefore:

dy

dt
= ↵(1� E 0). (45)

Since E (and hence E 0) is constant, the solution for y(t) along the characteristic is:

y(t) = ↵(1� E 0)t+ f(E), (46)

where f(E) depends on the initial conditions which for the generating function we find it to
be E(y, t = 0) = Ney which yield y(t = 0) = ln E 0. The derivation moves forward as follows:

y = ln E 0 + ↵t(1� E)
ey = E 0e↵t(1�E 0)

ey�↵t = E 0e�↵tE 0
. (47)

Now note that the generating function for y = 0 yields E(0, t) = N � C above the gel point
and the following expression for the largest cluster is found:

C

N
= 1� e�

2Ft
N2 C . (48)

The solution can by written by means of the W -Lambert function as:

C = N(1�W (zez) /z), z = �2Ft/N. (49)

which is the equation given in the main paper.
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D. Specific examples of online hate/COVID-19 malicious matter and links.
WARNING: THIS SECTION CONTAINS OFFENSIVE MATERIAL

Figures S3-S11 show postings that support the results shown in the main paper. Our com-
mentary on all these postings in the paper and SI is an opinion based on the information
available to us at the time.
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3/25/20

1

NRM Supporter chat (left panel) cross-posting news about the 
Coronavirus from Alt Skull’s Charnel House (right panel).

NRM, Nordic Resistance Movement, is a self-described neo-Nazi 
party operating in multiple Scandinavian countries. Several of their 
members are in prison in Sweden for bombing an asylum center 
and book stores.1 

Alt Skull’s Charnel House is a Telegram channel that claims an 
affiliation with Atom Waffen Division (AWD).
Right panel: Alt Skull sharing TERRORWAVE REFINED, one of AWD’s 
‘official’ channels. 
U.S. State Department seems to have moved to label AWD a 
terrorist organization based on links to multiple murders across the 
U.S.2

Sharing news about the Coronavirus has given both extremist 
groups an opportunity to coalesce around an international issue. 

Side-note: AltSkull’s channel is encouraging humans to take fish 
antibiotics for Covid-19, following alledged health misinfo from WH 
that allegedly led to a man dying in Arizona.3 

DISCLAIMER: Our commentary on this and all other pages is an opinion 
based on the information available to us at the time

https://t.me/NRMchat/135208 https://t.me/Alt_Skull/7866

1

On March 18th, 2019 Alt Skull’s Charnel House 
shared a message that seems to encourage 
followers to shoot FEMA agents while sharing a 
broader string of messages that the covid-19 
response is just an attempt at a government 
takeover and a hoax. This is the impression given 
to us when reading it.

DISCLAIMER: Our commentary on this and all other pages is an 
opinion based on the information available to us at the time.

1.  https://www.reuters.com/article/us-sweden-attacks-verdict/three-swedish-men-get-jail-for-bomb-attacks-
on-asylum-centers-idUSKBN19S1M5

2. https://www.politico.com/news/2020/03/09/state-department-white-supremacist-group-124500

3. https://www.nytimes.com/2020/03/24/us/chloroquine-poisoning-
coronavirus.html?campaign_id=9&emc=edit_NN_p_20200324&instance_id=17020&nl=morning-
briefing&regi_id=117214614&section=topNews&segment_id=22704&te=1&user_id=9dbcbb6c47e04834b77
c27d56b3f4073

https://t.me/Alt_Skull/7770

2

Figure S3: Example postings as discussed in the main text, from the social media platform
Gab. The top panel shows cross-posting about COVID-19. The bottom panel shows a
message appearing to encourage violence.
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Figure S4: Example postings as discussed in the main text, from the social media platform
Telegram. The top and bottom panels discuss and demonstrate how Gab users promote a
Facebook group in association with promoting violence.
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3/25/20

2

https://www.facebook.com/groups/UKPatriotAlliance/permalink/82
3699094793090/

UK Patriot Alliance

UK Patriot Alliance has posts that combine 
Conspiracy Theories and COVID-19 narratives.
In the attached example, the FB Group 
administrator implies that COVID-19 is a tool 
handled with agency within a socially engineered 
contest rather than a natural occurring 
phenomenon:

“CoronaVirus is that it’s real intention is to
crash the global economy […]
[W]hite hats have used this to their
advantage and are now actively steering the
economy out of the hands of the elite[…]”
“Q has been very quiet in regards to the
CoronaVirus, and I think we will all find out
why soon enough[…]”
https://www.facebook.com/groups/UKPatriotAlliance/p
ermalink/823699094793090/

Target Node and Hate+COVID-19 content

3

https://gab.com/WeSpeakAntique/posts/103784596019293363

Source Node and Hate+COVID-19 content

The “Coming European Civil Wars” Gab 
group has many posts that are both hateful 
and COVID-19 related.

This is one example, where the fake news 
about Italy’s COVID-19 patient 0  is 
intertwined with a range of racial 
stereotypes, and even proposes executions.

Furthermore note that the full posts also 
promote a set of fake or hateful news hubs 
in Gab and on the Web. It appears to be 
part of a coordinated effort to distribute a 
hateful narrative.

4

Figure S5: Example postings as discussed in the main text. The top panel shows how the
UK Alliance has posts that combine conspiracy theories with COIVD-19 narratives. The
bottom panel shows a Gab discussion around violence.
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Figure S6: Example postings as discussed in the main text. Both top and bottom panels
demonstrate the level of violent rhetoric typically appearing.
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Figure S7: Further example postings as discussed in the main text, with visual messaging.

22



Figure S8: Another example posting as discussed in the main text, with violent narratives.
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Figure S9: Reaction to rumored COVID-19 containment policies.
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Figure S10: Example postings showing the rumors about COVID-19 spread.
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Figure S11: Example postings showing the aggression toward certain sectors of society and
races.
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E. Example of LDA topic analysis of hate multiverse content before COVID-19 outbreak
WARNING: THIS SECTION CONTAINS OFFENSIVE MATERIAL

Figure S12 shows the typical results that we get from the analysis of the text, as discussed
in the main paper.

Figure S12: Example output from our machine learning (LDA) analysis discussed in the
main paper text.
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