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Supplementary Fig. 1 | C-Nucleophiles as probes for sulfenic acids. a, Two routes to the generation
of the cysteine S-sulfenylation posttranslational modifications, including the oxidation of thiols and the
hydrolysis of polarized sulfur species. b, The fates of protein sulfenic acids. They can play a role as a
redox switch, forming disulfide bonds, or underwent irreversible oxidation to sulfinic and sulfonic acids
under stress conditions. ¢, Mechanism of sulfenic acid labeling by DYn-2, a nucleophilic probe based on
the 1,3-cyclohexadione scaffold. d, A functional group diversification strategy generates a library of
nucleophiles with diverse reactivity.
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Supplementary Fig. 2 | Pseudo-first order rate plots of reactions between Wittig reagents and a
cyclic sulfenamide (CSA). Detailed experimental procedure is described in supplementary methods.
a, A small molecule dipeptide model of sulfenic acid was used to evaluate the kinetics of Wittig reagents.
All reactions were carried in 25 mM NaOAc-ACN (2:1 v/v), pH 4.9 buffer. b, First order kinetic plot of 500
UM Wittig-CHO (2) and 100 uM CSA. c, First order kinetic plot of 125 uM Wittig-COMe (3) and 25 uM
CSA. d, First order kinetic plot of 500 uM Wittig-COzEt (4) and 100 uM CSA. e, First order kinetic plot
of 250 uM Wittig-NHPh (5) and 25 uM CSA. f, First order kinetic plot of 500 uM WittigMe-CO.Et (6) and
100 uM CSA. g, First order kinetic plot of 500 uM TPP-9FL (7) and 50 uM CSA.
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Supplementary Fig. 3 | Titration and pKa determination of Wittig reagents. A solution (3 mL,
ACN:H20 = 1:2) of Wittig reagent (5 mM) was prepared in a glass reaction vial. HCI solution (ACN:H>O
= 1:2, approx. 10 mM) was added with 0.1 mL interval with stirring while the pH of the solution was
recorded. pKa was determined to be the pH at midpoint (halfway of the equivalence point where pH
drastically decreases). a, Titration of Wittig-Me (3). b, Titration of WYneC (8). c, Titration of Wittig-
CO:Et (4). d, Titration of WYneO (9).
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Supplementary Fig. 4 pKadetermination of amide derivatives of Wittig reagents. Due to instability
in basic solutions, pKa cannot be determined by titration. Instead, their reaction rates with CSA at various
pH were fitted as sigmoid functions (upper limit set at 2,000 min) and pKa was derived from the logECso
of the curve. a, Estimated pKa of WittigNHPh (5). b, Estimated pKa of WYneN (10).
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Supplementary Fig. 5 | Second order rate plots of reactions of WYne probes. Calculation is
described in supplementary methods. a, First order rate constants of WYneC (8) at pH 4.9. b, Second
order rate of WYneC (8) was obtained from linear regression of first order reaction rates vs.
concentrations of the probe. c, First order rate constants of WYneO (9) at pH 4.9. d, Second order rate
of WYneO (9) was obtained from linear regression of first order reaction rates vs. concentrations of the
probe. e, First order rate constants of WYneN (10) at pH 7.4. f, Second order rate of WYneN (10) was
obtained from linear regression of first order reaction rates vs. concentrations of the probe.
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Supplementary Fig. 6 | Cross-reactivity study of WYne probes with cysteine oxoforms. Except
that a small amount of WYneC was decomposed to triphenylphosphine oxide (TPPO) due to hydrolysis,
the peak sizes of WYneC/N did not change over time, indicating no reactivity with these sulfur compounds.
Studies were performed with 0.1 mM solutions of WYneC/N in 1 mL HEPES buffer (degas by N», 2:1
HEPES:ACN (v/v), 50 mM HEPES, 100 mM NacCl, pH 7.4) with one of the sulfur-containing compounds
(1 mM, GSH: glutathione reduced; GSSG: glutathione disulfide; GSNO: S-nitrosoglutathione; Cys-SO-H:
cysteine sulfinic acid; G-SOszH: glutathionesulfonic acid). The resulting solutions were kept at room
temperature and analyzed on LC-MS after 0, 2 and 20 h. a, LC traces (190 nm) of WYneC (8) and
cysteine oxoforms. b, LC traces (190 nm) of WYneN (10) and cysteine oxoforms.
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Supplementary Fig. 7 | Reaction kinetics between WYneC and disulfides. a, Reaction between 0.25
mM of WYneC (3) and 5 mM of DTNB in 50 mM HEPES buffer, pH 7.4. b, Reaction between 0.25 mM
of WYneC (3) and 5 mM of 4-DPS in 50 mM HEPES buffer, pH 7.4. c, Reaction rate of WYneC (3) with
CSA (R-SOH) is much higher than “activated” disulfides DTNB (95,500-fold) and 4-DPS (120,000-fold),

while an “inert” disulfide (GSSG) did not react with WYneC.
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Supplementary Fig. 8 | Reaction of Wittig-Me (3) in presence of aldehydes. Wittig-Me (1 mM)
reacted with CSA dipeptide (1 mM) in PBS-ACN (2:1 v/v, pH 7.4) buffer with various aldehydes (10 mM):
4-nitrobenzaldehyde (a); pyridoxal (b); isovaleraldehyde (c) and formaldehyde (d). Quantitative product
formation was observed in all four cases, indicating no interference from aldehydes.
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indicated above. Compound stability was evaluated by periodic LC-MS analyses over a time period of
20 h.
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Supplementary Fig. 10 | Cytotoxicity of WYne probes in A549 cells. Exponentially growing HelLa
cells were seeded in a 96-well plate at a density of 6,000 cells/well. After 16 h, culture media were
replaced with 100 uL media containing test compounds or vehicle (2% DMSQ). After 2 h incubation,
culture media were replaced with 100 pL fresh media and 20 pL MTS reagent (CellTiter 96 AQueous One
Solution Cell Proliferation Assay, Promega). After 1.5 h incubation at 37°C, the absorbance at 490 nm
was recorded. Data was plotted as survival (Asg ratio of treatment/control) vs. concentration by
GraphPad Prism 7 using the “Inhibitor vs. response -- Variable slope (four parameters)” function. a,
Cytotoxicity assay of WYneC. b, Cytotoxicity assay of WYneO. c, Cytotoxicity assay of WYneN.
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Supplementary Fig. 11 | Representative MS/MS spectra of the GAPDH peptides bearing WYne
probes-derived cysteine adduction. a-b, MS/MS spectra of the GAPDH peptides bearing intact
WYneC and WYneO probe, respectively. Diagnostic fragment ions (DFIs) provided by C-S bond
cleavage from the intact probe-peptide adducts are shown in purple color. c-e, MS/MS spectra of the
GAPDH peptides bearing WYne probes with a loss of triphenylphosphine.
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Supplementary Fig. 12 Proteome-wide selectivity of WYneN. a-b, Analysis of the amino acid
specificity of WYneN. A549 cells labeled with WYneN were processed and analyzed as described in the
methods section of this Supporting Information. pFind software was used to allowing the modification on
any potentially polar amino acid. Bar charts showing the percentages of probe-modified sites (a) or the
percentages of spectral counts of probe-modified sites (b) for individual amino acids. c-d, Representative
western blot (c) and quantification (d) demonstrating that in situ WYneN treatment does not perturb the
cysteinome. A549 cells were labeled with WYneN at the indicated concentrations at 37°C for 2h. Then
the cell lysates were harvested and labeled with a thiol-reactive probe, namely biotin-IAM, separated with
SDS-PAGE, and analyzed with streptavidin-HRP-based western blotting. ns, not significant. Student’s t-
test. e, QTRP-based site-specific analysis showing that both non-clickable WYne warhead and vehicle
control had no significant impact on the cysteinome. A549 cells treated with or without WYneN warhead
were labeled in vitro with a “clickable” thiol-reactive probe IPM. The probe-tagged proteomes were
processed and analyzed as previously described®. In principle, only high heavy-to-light ratio (Ru., control
versus treatment) values are indicative of cysteines that have less free thiol being available after WYneN
warhead treatment. Not unexpectedly, those cysteines perturbed by either control or WYneN warhead
treatment comprised only ~5% of all quantified sites, when a common cutoff (1.5-fold change) was
applied. f, Representative extracted-ion chromatograms from (e) showing no change in IPM-tagged
peptides from three well-known redox sensors, including GAPDH (C152), PRDX6 (C47) and GSTO1
(C32), from A549 cells treated with the non-clickable WYneN. The profiles for light- and heavy-labeled
peptides are shown in red and blue, respectively. Heavy (Control)/light(treatment) ratios were calculated
from biological duplicates and are displayed below the individual chromatograms.
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Supplementary Fig. 13 | WYneN-based in situ S-sulfenylome analysis. a, Rank plot showing site-
specific changes in cysteine S-sulfenylation in A549 cells proteome in response to H.O- treatment. Those
sites with known functions retrieved from the Uniprot database are labeled in different colors as indicated.
b, Extracted-ion chromatograms showing changes in WYneN-tagged peptides from UCHL1 (C220),
GAPDH (C247), PRDX6 (C47) and ASAH1 (C43) from H,O; stimulation of A549 cells. The profiles for
light- and heavy-labeled peptides are shown in red and blue, respectively. Heavy (H20.)/light (control)
ratios were calculated from biological duplicates and are displayed below the individual chromatograms.
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Supplementary Fig. 14 | Confocal live cell imaging of BDP-WYneN10 (500 nM) and MitoTracker
Deep Red (100 nM) in cells. Confocal live cell images of BDP (green channel), MitoTracker Deep Red
(red channel), merged and DIC (with a scale bar of 20 um) were shown. Pearson's correlation coefficients
(R) were calculated from the average of five regions of interest (ROISs) in representative cells. a, Live cell
imaging of A549 cells. b, Live cell imaging of NIH3T3 cells. c, Live cell imaging of RKO cells.
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Supplementary Fig. 15 | Effect of mitochondrial uncouplers on localization of BDP-WYneN10.
Hela cells were incubated in DPBS, with FCCP (50 uM) or antimycin A (AMA, 15 uM) for 1 h at 37 °C,
then treated with 1 uM BDP-WYneN10 and live cell images were acquired after 15 min. Disruption of
mitochondrial respiration resulted in poor localization of the fluorescent probe. A scale bar of 20 um is
shown on each image.
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199  were incubated with BDP-WYneN10 (1 uM) and MitoTracker Deep Red (0.1 uM) in DBPS, with various
200 concentrations of H,O,. Live cell imaging was performed after 1 h. An increase in BODIPY fluorescence
201  was observed along with increasing oxidant concentration, whereas the MitoTracker fluorescence stayed
202  at a similar level.
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Supplementary Fig. 17 | Effect of WYne probes on mitochondrial respiration. Oxygen consumption
rates (OCR) were obtained on a Seahorse XF96 following manufacturer's protocol. A plate of 95%
confluent A549 cells in 180 yL RPMI assay media were injected with the following compounds (12
replicates) in the order of: Port A: WYne probes (50 pM final concentration). Port B: Oligomycin A (1.5
pMM). Port C: FCCP (1.5 uM). Port D: Antimycin A and rotenone (0.5 uM each). Three cycles consisting
3 min mixing and 3 min measurements were performed after each addition.
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Supplementary Fig. 18 | Structures of vectors 15 and 16, and a disulfide control compound 18,
and their colocalization with MitoTracker™ Deep Red FM. Live cell images were acquired from HelLa
cells stained with BODIPY (BDP)-tagged probes (0.5 uM) and MitoTracker (0.1 uM) in DPBS. Pearson’s
correlation coefficients were calculated from five regions of interest (ROIs). Statistical significance of
Pearson's correlation coefficients between the vehicle and the control was shown (unpaired t-test, * P <
0.05, **** P < 0.0001).
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Supplementary Fig. 19 | Enzymatic generation of HOCI triggered redox-decaging and TPP-conjugation
of a fluorescent dipeptide substrate. Myeloperoxidase produced HOCI which oxidized the substrates
DMDE or MMDE (5 puM) in pH 7.4 PBS solution (0.1 mL). The resulting sulfoxide product reacted with
Wittig reagent in 1 h (MMDE, panel a) or 6 h (DMDE, panel b) at 37 °C. Reaction progresses were
monitored by LC-MS (absorption at 493 nm). LC peaks corresponding to DMDE (compound 14, labeled
as “al”), its sulfoxide (a2) and TPP-adduct (a3); and MMDE (compound 13, labeled as “b1”), its sulfoxide
(b2) and TPP-adduct (b3) are labeled with corresponding mass shifts.
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246  Supplementary Fig. 20 | Enzymatic oxidative decaging of MMDE and in vivo delivery of a
247  fluorescent cargo to mitochondria. HelLa cells in 8-well culture slides (ibidi p-slide) were incubated
248  with MMDE (0.2 pM), Wittig-COzEt (5 puM), H20, (1 mM) and myeloperoxidase (MPO, 0.15 mg/mL) in
249  DPBS containing MitoTracker Deep Red (50 nM). After 1 h incubation at 37 °C, live cells were imaged
250 under a confocal microscope. A scale bar of 20 um, and a zoom-in area of 20x20 um was shown.
251  Pearson's correlation coefficients (R) were calculated from the average of five regions of interest (ROIs)
252  inrepresentative cells. a, Confocal images of HeLa cells after treatment. A scale bar of 20 um was added
253 on the merged image. b, Control experiment with the same setup excluding MPO. c, Statistical
254  significance of Pearson's correlation coefficients between the two experiments (unpaired t-test, P =
255  0.0001).
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259  Supplementary Fig. 21 | Oxidative decaging of MMDE and mitochondrial delivery in macrophage
260 cells. RAW 264.7 cells were stimulated with 1 pg/mL LPS for 24 h, then treated with MMDE (0.2 pM),
261  Wittig-CO2Et (5 pM) and H,O, (1 mM) in DPBS containing MitoTracker Deep Red (50 nM). After 1 h
262  incubation at 37 °C, live cells were imaged under a confocal microscope. A scale bar of 20 um, and a
263  zoom-in area of 20x20 um were shown. Pearson's correlation coefficients (R) were calculated from the
264  average of five regions of interest (ROIs) in representative cells. a, Confocal images of RAW 264.7 cells
265  after treatment. b, Control experiment without the Wittig reagent and H,O,. c, Statistical significance of
266  Pearson's correlation coefficients between the two experiments (unpaired t-test, P = 0.0008).

22



267

268

269
270
271
272
273
274

WittigQ10-WYneO-BDP

a BDP MitoTracker Merge (R =0.71)

b BDP MitoTracker Merge (R =0.74)

Supplementary Fig. 22 | Live cell confocal imaging of WittigQ10-WYneO-BDP showed signs of
localization to mitochondria. A scale bar of 20 pm, and a zoom-in area of 30x30 pum were shown.
Pearson's correlation coefficients (R) were calculated from the average of five regions of interest (ROIs)
in representative cells. a, Hela cells were treated with 1 pM of WittigQ10-WYneO-BDP (prepared via
click chemistry protocol and HPLC purified) and 50 nM of MitoTracker Deep Red in DPBS. b, HelLa cells
were pre-incubated with FCCP (50 uM) for 1 h and treated with the aforementioned probes in DPBS.
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277  Supplementary Fig. 23 | Mitochondrial complex Il assay with WittigQ in presence of quinone
278 depleted bovine heart mitochondria (BHM) or control at 37 °C. Complex Il activity resulted in
279  reduction of WittigQ and a steady decrease in OD600. Detailed experimental procedure is described in
280  supplementary methods.
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S| 1. Reaction kinetics study

R

o ‘ Ph3PW bz L o}

o +H,0 o) : N
\ 2 CbzHN N o] L

o — - H ~N
CszN\—.)LN oo S
e s R
OH

2:1 Acetate:ACN, rt +
pH 4.89

The rate studies measuring the reaction between nucleophiles with a model dipeptide-SOH were
performed as previously described (Gupta, V.; Carroll, K. S. Chem. Sci. 2016, 7, 400). To a 2 mL solution
of a nucleophile in an appropriate buffer (10 mM PBS pH 7.4, or sodium acetate pH 4.9) was added 1
mL solution of cyclic sulfenamide (CSA) in acetonitrile. In order to obtain pseudo first-order kinetics, the
concentration of nucleophile was maintained at least 5 times higher than CSA. An aliquot (300 pL) of the
reaction was collected at regular intervals (a total of 9 data points) and immediately quenched by addition
of formic acid (100 pL). First order rate constant (k) was obtained by plotting the UV peak area (Y-axis)
of the product against time (X-axis) and analyzing the plot using the “Dissociation - One phase

exponential decay” function in GraphPad Prism 7:
Y = (YO —NS)-e ** + NS

For initial survey of the reactivity of Wittig reagents, second-order rate constants (K) was calculated from

first order rate constants (k) and the concentration of nucleophiles (C):
K- k
- C

For WYne probes, second-order rate constant (K) was obtained from the linear regression of first order

rate constants (k) vs. concentrations of nucleophiles (C):

k =K -C + intercept
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S| 2. Cell culture and labeling
A549, HelLa, RKO and NIH3T3 cells were sourced from ATCC. Cells were cultured in corresponding
media (HeLa and RKO cells in EMEM; NIH3T3 cells in DMEM; A549 cells in RPMI-1640) supplemented

with 10% (vol/vol) FBS (Invitrogen), maintained at 37 °C under 5% CO- humidified atmosphere.

For in situ labeling, cells at ~80% confluency were cultured in serum-free medium overnight, then
switched to fresh serum-free medium containing vehicle (2% DMSO) or probes. After incubation for a
certain peroid of time, cells were washed with cold PBS (3 mL x 4), then treated with HEPES lysis buffer
(50 mM HEPES, 150 mM NaCl, pH 7.4, 1% NP-40 (Igepal CA-630), 0.5 % sodium deoxycholate, 0.1%
SDS, with 1X freshly added protease inhibitor (Roche cOmplete™, EDTA-free Protease Inhibitor) and
200 U/mL catalase). The flasks were kept on ice with occasional swirling for 10 min. The lysates were
transferred to 1.5 mL Eppendorf tubes and cell debris were removed by centrifugation (16,000 x g, 15
min). Protein concentration of the supernatant was determined by BCA assay (Thermo Scientific) and
adjusted to an approriate concentration (0.4-1.0 mg/mL) with HEPES buffer (50 mM HEPES, 150 mM

NaCl, pH 7.4).

SI 3. Click chemistry (CuAAC)

To 89 uL alkyne-tagged lysate solutions were added: 2 uL azide reporter compound (e.g. TAMRA-Ns, 5
mM), 7 L premixed CuSO4-BTTP (2 uL 12.5 mM CuSOQ,, 5 uL 10 mM BTTP) then 2 pL sodium ascorbate
(125 mM). The Click reactions were rocked at room temperature for 1 h, then quenched with addition of

1 pL EDTA (100 mM).

Reagents for CUAAC Effective final concentration (UM)
TAMRA-N3 100

CuSO0Oq. 250

BTTP 500

Sodium ascorbate 2500
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For CuAAC of small molecules with BDP-FL-azide (Lumiprobe Inc.), reactions were performed in 1 mL
DMSO-H0O (1:1 v/v) using a similar procedure as above. After reaction completion, the mixture was

purified by prep-HPLC (5-100% ACN-H,O gradient) to afford BDP conjugates.

Reagents for CUAAC Effective final concentration (uM)

(small molecules)

BDP-FL-azide 200

Small molecule alkynes 1000

CuS0Oq 1000
BTTP 2000
Sodium ascorbate 2500

Sl 4. In-gel fluorescence

After conjugation with TAMRA-N3, the labeled protein samples were mixed with non-reducing SDS
sample buffer and separated by SDS-PAGE (4-20%), washed twice with water and MeOH-H,O-AcOH
(4:5:1 v/v/v, 5 min per wash) and imaged (Azure Sapphire™ Biomolecular Imager) at 520 nm (TAMRA)
and 658 nm (protein ladder), followed by staining (coomassie brilliant blue R-250) to ensure equal protein

loading.

SI 5. Inact protein mass spectrometry

Protein samples were buffer exchanged (50 mM ammonium bicarbonate, with Zeba™ Spin Desalting
Columns (7k molecular weight cutoff, Thermo Scientific) and diluted with ammonium bicarbonate (50 mM)
to a final concentration of 3 uM. 10 pL of each sample was separated by HPLC (GRACE VyDAC C4

protein column, 50x4.6 mm, 5-100% ACN in H»O gradient) and analyzed by mass spectrometry (Thermo
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Scientific LTQ Linear lon Trap MS). Obtained mass spectra were deconvoluted using the MagTran

software (Dr. Zhonggi Zhang, Amgen Inc., Thousand Oaks, CA).

Sl 6. Chemoproteomic workflow

S1 6.1 Cell culture and treatment

A549 cells were purchased from the ATCC, cultured in DMEM supplemented with 10% FBS (Invitrogen),1%
penicillin-streptomycin (Invitrogen) and 1% Glutagro (Corning), maintained at 37°C in a 5% CO:
humidified atmosphere. For H,O; treatment, cells were grown to ~80% confluency and subjected to
serum-deprivation overnight. Then, cells were washed with fresh and pre-warmed serum-free medium

and incubated with medium containing 1mM H,O, at 37°C for 15 min.

S1 6.2 Chemoselective labeling the S-sulfenylome

For in vitro labeling, A549 cells without stimuli were harvested, lysed in pre-chilled NETN buffer (50 mM
HEPES (pH 7.6), 150 mM NacCl, and 1% IGEPAL) supplemented with 1 x protease and phosphatase
inhibitors (Thermo Scientific, A32961) containing 200 unit/mL catalase (Sigma-Aldrich), and then
incubated with 5 mM of the SOH-specific probe as indicated (WYneC, WYneO, WYneN, BTD, or DYn-2)
at 37°C for 2 h with rotation and light protection. For in situ labeling, intact A549 cells treated with or
without H202 (1 mM, 15 min, 37°C) were incubated with 0.5 mM probe as indicated (WYneN, *Cs WYneN,

or BTD) at 37°C for 1 h and then were lysed with aforementioned NETN buffer.

S| 6.3 Subsequent labeling of the nucleophilic cysteinome

A549 cells labeled with *Cs WYneN were harvested and lysed as described above. The same protein

samples were then reduced with 10 mM TECP at room temperature (RT, 25°C) for 30 min to reduce
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reversible oxidations other than sulfenic acids and subsequently labeled with 20 mM IPM, a ‘clickable’

thiol-reactive probe, at RT for 1 h.

Sl 6.4 Preparing the probe-labeled protein samples

The probe-labeled protein samples were incubated with 40 mM iodoacetamide at 37 °C for 1 h with light
protection. To remove all the excess small molecules, proteins were then precipitated with a methanol-
chloroform system (aqueous phase/methanol/chloroform, 4:4:1 (v/v/v)). The precipitated proteins were
resuspended with 50 mM ammonium bicarbonate containing 0.2 M urea and digested with sequencing
grade trypsin (Promega) at a 1:50 (enzyme/substrate) ratio overnight at 37°C. The tryptic digests were
desalted with HLB extraction cartridges (Waters) and evaporated to dryness. For qualitative and
ratiometric analyses, dried peptides were resuspended in a water solution containing 30% acetonitrile
(MeCN). For stoichiometric quantification, dried peptides were resuspended in a water solution containing
50% MeCN. CuAAC reaction was then performed as described previously' by subsequently adding 1
mM either light or heavy Azido-UV-biotin (1 uL of a 40 mM stock), 10 mM sodium ascorbate (4 uL of a
100 mM stock), 1 mM TBTA (1 pL of a 50 mM stock, and 10 mM CuSOs4 (4 pL of a 100 mM stock). After
2h incubation at RT, the light and heavy isotopic tagged samples were then mixed immediately following
CuAAC reaction. The samples were cleaned by strong cation exchange (SCX) spin columns and then
subject to the enrichment with streptavidin beads for 2 h at RT. Streptavidin beads were washed with 50
mM NaAc (pH4.5), 50 mM NaAc containing 2 M NaCl (pH4.5), and deionized water twice each with
vortexing and/or rotation to remove non-specific binding substances, then resuspended in 25 mM
ammonium bicarbonate, transferred to glass tubes (VWR), and irradiated with 365 nm UV light (Entela,
Upland, CA) for 2 h at RT with magnetic stirring. The supernatant was collected, dried under vacuum,

and stored at —20°C until LC-MS/MS analysis.

Sl1 6.5 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis
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LC-MS/MS analyses were performed on a Q Exactive plus instrument (Thermo Fisher Scientific). Peptide
samples were reconstituted in 0.1% formic acid and pressure-loaded onto a 2-cm microcapillary
precolumn packed with C18 (3-um, 120 A, SunChrom, USA) operated with an Easy-nLC1000 system
(Thermo Fisher Scientific). The precolumn was connected to a 12-cm 150-pm-inner diameter
microcapillary analytical column packed with C18 (1.9-um, 120 A, Dr. Maisch GebH, Germany) and
equipped with a homemade electrospray emitter tip. The spray voltage was set to 2.0 kV and the heated
capillary temperature to 320°C. LC gradient consisted of 0 min, 7% B; 14 min, 10% B; 51 min, 20% B;
68 min, 30% B; 69-75 min, 95% B (A = water, 0.1% formic acid; B = MeCN, 0.1% formic acid) at a flow
rate of 600 nL/min. MS1 spectra were recorded with a resolution of 70,000, an AGC target of 3e6, a max
injection time of 20 ms, and a mass range from m/z 300 to 1400. HCD MS/MS spectra were acquired
with a resolution of 17,500, an AGC target of 1e6, a max injection time of 60 ms, a 1.6 m/z isolation
window and normalized collision energy of 30. Peptide m/z that triggered MS/MS scans were dynamically

excluded from further MS/MS scans for 18 s.

Sl 6.6 Peptide identification and quantification.

For blind search, raw data files were searched against Homo sapiens Uniprot canonical database using
DirecTag-TagRecon as previously described?®. the maximum maodification mass was 600 Da, precursor
ion mass tolerance was 0.01 Da, and fragmentation tolerance was 0.1 Da. The blind search results were

visualized and analyzed with IDPicker*.

For targeted search, raw data files were searched against Homo sapiens Uniprot canonical database
using pFind studio®. Precursor ion mass and fragmentation tolerance were set as 10 ppm and 20 ppm,
respectively. The maximum number of modifications and missed cleavages allowed per peptide were
both set as three. For all analyses, mass shifts of + 15.9949 Da (methionine oxidation) and + 57.0214
Da (iodoacetamide alkylation) were searched as variable modifications. For site-specific mapping of
probe-modified SOH sites, mass shifts of + 511.202 (C30H30N303P, Intact) and +265.142

(C13H19N303, cleaved) for WYneC, + 513.181 (C29H28N304P, intact) and +267.121 (C12H17N304,
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cleaved) for WYneO, +512.197 (intact) and +252.122 (C11H16N403, cleaved) for WYneN, +418.131
(C19H22N405S) for BTD, and +333.169 (C17H23N304) for DYn-2 were searched as variable
modifications, respectively. For stoichiometric quantification of %SOH, mass shift of +252.122
(C11H16N403, for both TPP-cleaved adduct derived from WYneN and the adduct derived from IPM) was

searched as variable variable modification.

For qualitative and ratiometric analyses, a differential modification of 6.020 Da on probe-derived
modification was used for stable-isotopic quantification. For stoichiometric analysis, a differential
modification of 5.017 Da on probe-derived modification was used for stable-isotopic quantification. The
FDRs were estimated by the program from the number and quality of spectral matches to the decoy
database. The FDRs at spectrum, peptide, and protein level were < 1%. Quantitative analyses were
performed using pQuant®, which calculates light to heavy ratios (Run) based on each identified MS scan
with a 15 ppm-level m/z tolerance window and assigns an interference score (Int. Score) to each value
from zero to one. The median values of probe-modified peptide ratios with o less than or equal 0.5 were
considered to calculate site-level ratios. Quantification results were obtained from two or four biological

replicates.

S| 7. Confocal microscopy

Cells were cultured in 35 mm dishes (Ibidi y-Dish, cell culture treated) at 50-75% confluency. The media
was replaced with DPBS (VWR, with Ca?" and Mg?*) containing fluorescent probes. After 10 min of
incubation at 37 °C, live cell images were acquired on a confocal microsope (Olympus Fluoview 1000)
with preset channel settings (FITC channel for BODIPY-containing probes; Cy5 channel for
MitoTracker™ Deep Red). Pixel intensity and colocalization analysis were performed with the ImageJ

software (Wayne Rasband, NIH).
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S| 8. Redox-decaging and capture of sulfenic acids with Wittig reagents

Redox-caged sulfenic acids (50 pM in PBS, pH 7.4) was treated with HOCI (50 pM, 1 eq.). Immediate
formation of corresponding sulfoxide product was observed by LC-MS analysis. Wittig reagent (500 uM,
1 eq.) was then added, and the solution was incubated at 37 °C for an indicated time and analyzed on
LC-MS. Yield of the TPP-linked product was calculated based on the ratio of peak area (product/starting
material) at 493 nm. Assumption was made that all BODIPY fluorescent compounds have the same molar

extinction coefficient at 493 nm.

For myeloperoxidase (MPO)-induced generation of HOCI, recombiant human MPO (R&D Systems, 3174)
was treated with 2 mM H>O.in PBS (0.1 mg/mL) for 2 h at 37 °C, then redox-caged sulfenic acids (5 puM)
and Wittig reagent (100 puM, 20 eq.) was added succeedingly. The reactions were performed at 37 °C

and tracked by LC-MS (493 nm absorption).

S| 9. Preparation of HeLa mitochondria

HelLa cells from a 150 mm culture dish (2x107 cells) were washed and harvested (via scraping) in cold
PBS. Fractionating of intact mitochondria was performed with the Mitochondria Isolation Kit for Cultured
Cells (Thermo Scientific, 89874) with slight modification to manufacturer’s protocol. In brief, at 4 °C,
pelleted cells were mixed with 700 pL of Mitochondria Isolation Reagent A with 1X protease inhibitor
(Roche) for 2 min, homogenized in a dounce tissue grinder, and mixed with 700 yL of Mitochondria
Isolation Reagent C with 1X protease inhibitor. Cell debris were removed by centrifugation at 700 x g for
10 min. The supernatant was then centrifugated at 7,000 x g for 15 min to give pelleted mitochondria,
which were washed with 500 pL of Reagent C and centrifugated again at 12,000 x g for 15 min. The

mitochondria pellet was resuspended in appropriate buffer and used immediately for further studies.

33



494

495

496

497

498

499

500

501

502

503
504

505

506

507

508

509

510

511

512

513

514

515

516

S| 10. Assay of lipid peroxidation

100 pL aliquots of intact HeLa mitochondria (0.5 mg protein/mL) in KCI buffer (100 mM KCI, 10 mM
Tris'HCI, pH 7.6) was pre-treated with succinate (10 mM), rotenone (10 pM), and quinone antioxidant
(MitoQ or WittigQ, at 20/10/5/2.5/0 uM in duplicate). After 30 min incubation at 37 °C, lipid peroxidation
was induced by addition of FeSO4 (50 uM), sodium ascorbate (150 uM) and H>O, (1 mM). After 40 min
incubation at 37 °C, MDA assay solution (300 uL, Sigma-Aldrich MAK085) was added. The mixture was
heated at 95 °C for 1 h, cooled to room temperature and analyzed on a fluorescence spectrometer (ExX'Em
= 535/555 nm). Amount of MDA formed by lipid peroxidation was calculated from a standard curve, and

plotted against the concentration of the antioxidant.

Sl 11. Assay of complex Il activity

Activity of mitochondrial complex Il was assayed via a commercial kit (Cayman Chemical 700940).
Bovine heart mitochondria (1 pL, kit provided) were added to 50 pL reaction mixture containing 100 uM
WittigQ, 10 mM succinate, 10 uM rotenone, 1 mM KCN in KCI buffer (100 mM KCI, 10 mM Tris-HCI, pH
7.6), then mixed with 2.5 % DCPIP solution (50 yL). OD600 was plotted over time on a plate reader at

room temperature or 37 °C. Control experiment was performed in parallel without mitochondria.
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Synthetic Procedures

General All reactions were conducted in flame-dried glassware under nitrogen pressure with dry solvents,
unless otherwise noted. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO), or Acros
Organics (Fair Lawn, NJ) and used as received. Column chromatography was performed with silica gel
P60 (Sorbent Technologies) on an automated flash chromatography system (CombiFlash Nextgen 300+).
Reactions were monitored by thin layer chromatography (TLC) carried out using Analtech 60 F254 silica
gel (precoated sheets, 0.25 mm thick). *H-NMR and **C-NMR spectra were collected in CDCl; or DMSO-
d6 (Cambridge Isotope Laboratories, Cambridge, MA) at 400 and 100 MHz respectively, using a Bruker
AM-400 instrument with chemical shifts relative to residual CHCI3 (7.26 and 77.16 ppm) or DMSO (2.50
and 39.52 ppm). Low resolution mass spectroscopy analyses were carried out on an Agilent LC/MS
system (Agilent 1220 HPLC with InfinityLab Poroshell 120 SB-C18 column and Agilent 6120 Quad MS).
Preparative HPLC was performed on an Agilent 1260 HPLC system with ZORBAX SB-C18 column
(21.2x150 mm) using a gradient of 5-100% acetonitrile in water. All HPLC solvents were supplied with

0.1% (v/v) formic acid.

Preparation of 1-(triphenylphosphaneylidene)hex-5-yn-2-one (8)

1) nBuLi, THF Z
Ph3P:>7 2) PmpW
0
3 /Br

8

To an oven-dried and N-flushed flask was added a solution of 1-(triphenylphosphoranylidene)-2-
propanone (954 mg, 3.00 mmol) in dry THF (20 mL). The solution was cooled to -78 °C then n-BuLi (2.33
mL, 1.8 M in hexane, 4.20 mmol) was slowly added and the resulting brown solution was stirred at -78 °C
for 1 h. Then propargyl bromide (80 wt% in toluene, 400 pL, 4.20 mmol) was added and the solution was
slowly warmed to room temperature and stirred overnight. Solvent was removed in vacuo and the mixture

was diluted in DCM (30 mL), washed with water (20 mL x 3), dried (Na>SO,4) and concentrated in vacuo.
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The crude product was purified by flash chromatography (1-5% MeOH in DCM) and further purified by
prep-HPLC (5-100% ACN in H»0) to afford the title product as a white solid (557.1 mg, 1.56 mmol, 52%
yield). *H NMR (400 MHz, CDCls) 8 7.50 (m, 15H), 3.75 (d, J = 25.0 Hz, 1H), 2.55 (m, 4H), 1.95 (m, 1H).
13C NMR (100 MHz, CDCl3) & 190.71 (d, J = 2.2 Hz), 133.09 (d, J = 10.2 Hz), 132.06 (d, J = 2.9 Hz),
128.84 (d, J = 12.0 Hz), 127.01 (d, J = 90.3 Hz), 85.34, 67.81, 51.59 (d, J = 107.4 Hz), 39.90 (d, J = 15.8

Hz), 15.93. MS (ESI) Calculated for C2sH220P [M+H*] 357.1; observed 357.2

Preparation of prop-2-yn-1-yl 2-(triphenylphosphaneylidene)acetate (9)

0O

)J\/Br (@] ')
Br PPhs,, tol
Bryj\o/\\ 3, toluene thvj\o/\

DCM, pyridine then NaOH-H,0

Ho/\

9

Step 1: To a solution of propargyl alcohol (58 pL, 1.0 mmol) and pyridine (81 pL, 1.0 mmol) in DCM (10
mL) at O °C, bromoacetyl bromide (87 uL, 1.0 mmol) was added dropwise. The reaction mixture was
stirred at 0 °C for 20 min then warmed to room temperature and stirred for 30 min. After that, water (15
mL) was added and the mixture was extracted with DCM (10 mL x 3). The combined organic layers were

dried (Na2SO.) and concentrated in vacuo.

Step 2: The crude bromoacetyl ester above was dissolved in 3 mL toluene, and slowly added into a
solution of triphenylphosphine (262 mg, 1.0 mmol) in toluene (3 mL). The mixture was stirred at room
temperature overnight. The white precipitate was filtered, washed with toluene (10 mL) and hexane (10
mL), and taken in water (10 mL). NaOH (2 M) was added until the pH of the solution reached 8-9. The
mixture was extracted with DCM (10 mL x 3), dried (Na>SO.) and concentrated to give the title product
as a yellow oil (282 mg, 79 % in two steps). *H NMR (400 MHz, DMSO-ds) & 7.58 (m, 15H), 4.46 (d, J =
2.4 Hz, 2H), 3.32 (t, J = 2.5 Hz, 1H), 2.85 (d, J = 21.9 Hz, 1H). 3C NMR (100 MHz, DMSO-ds) 5 168.95

(d, J = 15.0 Hz), 132.55 (d, J = 10.1 Hz), 132.33 (d, J = 2.8 Hz), 129.02 (d, J = 11.9 Hz), 126.91 (d, J =
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91.5 Hz), 80.94, 75.64, 48.82 (d, J = 3.5 Hz), 29.14 (d, J = 127.6 Hz). MS (ESI) Calculated for CzsH2002P

[M+H*] 359.1; observed 359.0.

Preparation of (2-oxo-2-(prop-2-yn-1-ylamino)ethyl)triphenylphosphonium bromide (10)

0
Br)J\/Br \)Oj\ PPh,, toluene v 9
B 3
HQN\ r N\ Ph3P\)J\N/\\
NaHCO, H Br Ho O
DCM-H,0 10

Step 1: Propargylamine (0.30 g, 5.45 mmol) was dissolved in 10 mL DCM and 10 mL NaHCO; (sat'd aq.
soln.). The mixture was vigorously stirred at -10 °C and bromoaceytl bromide (0.7 mL, 8.17 mmol) was
slowly added. The mixture was slowly warmed to rt and stirred for 3 h. DCM was removed in vacuo and
the mixture was extracted with EtOAc (10 mL x 3). The combined organic layers were washed with sat’d
NaHCOs3;, 1 M HCI and brine (20 mL each), dried (Na;SO.) and concentrated to afford the

bromoacetamide compound as an off-white solid.

Step 2: Part of the crude bromoacetamide compound above (176 mg) was treated with PPhs (262 mg,
1.0 mmol) in toluene (5 mL) overnight. The precipitate was filtered, washed with toluene (10 mL) and
hexane (10 mL). The precipitate was purified by flash chromatography (1-7% MeOH in DCM), followed
by prep-HPLC purification (5-100% ACN in H20) to afford the title compound as a white powder (352 mg,
0.804 mmol, 80% yield). *H NMR (400 MHz, DMSO-ds) 8 9.01 (m, 1H), 7.83 (m, 15H), 5.03 (d, J = 15.0
Hz, 2H), 3.81 (dd, J = 5.5, 2.6 Hz, 2H), 3.16 (m, 1H). *C NMR (100 MHz, DMSO-ds) d 162.67 (d, J = 4.6
Hz), 134.86 (d, J = 3.2 Hz), 133.73 (d, J = 10.4 Hz), 130.06, 118.65 (d, J = 88.7 Hz), 79.75, 73.63, 30.97

(d, J =58.0 Hz), 28.47. MS (ESI) Calculated for C,3H2:NOP [M*] 358.1; observed 358.2.
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Preparation of *Cs-WYneN (heavy-10)

Step. 1 Step. 2

* - 13
= C * *
MsCl, Et;N, DCM x NH; (30% aq.)
/OH ///*\OMS %\NHZ-HCI
* then HCI *

Step. 3
o (COCl), 0]
Br Br
HO)*K*/ DCM, DMF Cl)’&f
Step. 5 Step. 4
o 0 NaHCO3;, DCM
+ PPhg, toluene, rt N 0°C-rt
P s
2N B

B
heavy-10
Step 1: 13Cs-Propargyl alcohol (250 mg, 4.24 mmol) was dissolved in dry DCM (10 mL) and EtsN (4.7
mmol) was added. The mixture was cooled to 0 °C then MsCI (4.7 mmol) was added dropwise. After
warming to rt (15 min), the mixture was stirred for another 2 h @ rt. The mixture was diluted with 5 mL
DCM and 15 mL NH4CI (sat'd aqueous solution). The organic layer was washed with 15 mL NaHCOs;
(sat’d aqueous solution) and 15 mL brine. The organic layer was dried and concentrated to afford the

crude mesylate as a yellow oil (595 mg, quantitative yield).

Step 2: 3.00 mmol of the mesylate above was dissolved in 10 mL aqueous ammonia (30%). The mixture
was stirred at room temperature for 3 h. After dilution with 5 mL NaOH (2 M), the aqueous layer was
extracted with DCM (10 mL x 3). Nitrogen gas was bubbled in the combined organic layers for 1 h, until
the vapor gave a negative alkali test (moist pH paper). 2 mL HCI (4 M in dioxane) was added, and the
solvent was removed in vacuo. The white precipitate was washed with cold ether (1 mL x 3) and dried to

afford *Cs-propargylamine hydrochloride (127 mg, 1.35 mmol, 45% yield).
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Step 3: ¥C,-bromoacetic acid (170 mg, 1.2 mmol) was dissolved in dry DCM (5 mL) with catalytic DMF
(20 pL). Oxalyl chloride (2.4 mmol) was slowly added while stirring at room temperature. After 1 h,
volatiles were removed in vacuo to afford the crude acid chloride which was used immediately in the next

step.

Step 4: ¥Cs-propargylamine hydrochloride (127 mg, 1.35 mmol) was dissolved in 5 mL DCM and 5 mL
NaHCO:s (sat'd aqueous solution) and cooled to 0 °C. The acid chloride above (1.2 mmol) in dry DCM (5
mL) was added dropwise. The reaction mixture was slowly warmed to rt and stirring was continued for
30 min. The mixture was diluted with sat’'d NaHCO;3; (10 mL) and extracted with DCM (15 mL x 3). After
drying (Na>SO.), the organic layer was concentrated and purified by flash chromatography (10-40%

EtOAc in hexane gradient) to afford the amide product as a white solid (74.0 mg, 0.41 mmol, 34% vyield).

Step 5: The purified *Cs-amide above (0.41 mmol) and triphenylphosphine (107 mg, 0.41 mmol) was
taken in toluene (5 mL). The mixture was stirred at room temperature overnight. After removal of solvent
in vacuo, the white precipitate was washed with cold ether (1 mL x 5), then purified by flash
chromatography (1-7% MeOH in DCM) to afford the title product heavy-10 as a white solid (104.5 mg,
0.236 mmol, 58% vyield). *H NMR (400 MHz, DMSO-dg) & 8.93 (brs, 1H), 7.88 (m, 3H), 7.75 (m, 12H),
5.13 (dd, J = 14.9, 6.2 Hz, 1H), 4.80 (dd, J = 14.9, 6.2 Hz, 1H), 3.99 (m, 1H), 3.65 (m, 1H), 3.16 (ddq, J
=244, 54.7, 2.6 Hz, 1H). 3C NMR (100 MHz, DMSO-ds) & 162.72 (d, J = 48.2 Hz), 134.87, 133.74 (d, J
=10.6 Hz), 130.01 (d, J = 13.0 Hz), 118.69 (d, J = 89.4 Hz), 79.90 (dd, J = 169.1, 71.0 Hz), 73.46 (dd, J
= 169.0, 13.3 Hz), 30.90 (dd, J = 58.1, 49.4 Hz), 28.46 (dd, J = 70.9, 13.3 Hz). MS (ESI) Calculated for

12C15M3CsH21NOP [M+] 363.1; observed 363.2.
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Preparation of WYneN10 (11):

0]

HO)J\/\/\/\/\/\BI,

EDCI, DMAP
DCM, rt, 4 h
0]
N)J\/\/\/\/\/\Br Si-1
z N (1)
NaN;, DMF
100 °C, 2 h
0]
NJ\/\/\/\/\/\N
=z N 3
PPh,
THF-H,0 (10:1)
er jj)\/\/\/\/\/\
=z N NH (S1-2)
Br-AcBr
DCM, rt, 30 min
0 g
Br
NJ\/\/\/\/\/\N
=z H H
PPh,
toluene, rt, o/n o )?\/Jr
J\/\/\/\/\/\ PPhs
N N (11)
/\ H H B

Preparation of 11-bromo-N-(prop-2-yn-1-yl)undecanamide (SI-1):

To a solution of 11-bromoundecanoic acid (1.00 g, 3.77 mmol) and propargylamine (256 uL, 4.00 mmol)
in dry DCM (10 mL) was added EDCI (767 mg, 4.00 mmol) and DMAP (48.8 mg, 0.40 mmol). The mixture
was stirred at room temperature for 4 h. After concentration in vacuo, the residue was purified by flash
chromatography (5-20% EtOAc in hexane) to afford the title compound as a white solid (0.95 g, 3.14
mmol, 85 % yield). *H NMR (400 MHz, CDCls) 8 5.65 (brs, 1H), 4.06 (dd, J = 5.3, 2.6 Hz, 2H), 3.41 (t, J
= 6.9 Hz, 2H), 2.24 (t, J = 2.6 Hz, 1H), 2.20 (m, 2H), 1.85 (m, 2H), 1.64 (m, 2H), 1.42 (m, 2H), 1.29 (m,

10H). *3C NMR (100 MHz, CDCl3) 5 173.07,79.77,76.85, 71.49, 36.45, 34.10, 32.86, 29.39, 29.32, 29.26,
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29.18, 28.77, 28.19, 25.60. MS (ESI) Calculated for C14H2sBrNO [M+H*] 302.1, 304.1; observed 302.1,

304.1.

Preparation of 11-amino-N-(prop-2-yn-1-yl)undecanamide (SI-2)

The product above (377.5 mg, 1.25 mmol) was dissolved in DMF and NaNs (163 mg, 2.5 mmol) was
added. The mixture was heated to 100 °C with stirring in a sealed tube filled with N.. After 2 h, the mixture
was diluted with water (20 mL) and extracted with DCM (20 mL x 3). The combined organic layers were
washed with brine and dried (Na>SO,) to afford the crude azido compound as a white solid (301.0 mg,
1.23 mmol), which was dissolved in THF (5 mL) and H>O (0.5 mL). Triphenylphosphine (655 mg, 2.5
mmol) was added, and the solution was stirred at room temperature overnight. After concentrating in
vacuo, the precipitate was washed several times in cold EtOAc to afford the title compound as a white
solid (194.1 mg, 0.816 mmol, 65% vyield in two steps). *H NMR (400 MHz, Methanol-d4) & 3.94 (s, 2H),
3.04 (t, J = 7.1 Hz, 1H), 2.61 (t, J = 7.2 Hz, 2H), 2.19 (t, J = 7.5 Hz, 2H), 1.60 (t, J = 7.0 Hz, 2H), 1.45 (t,
J =7.1Hz, 2H), 1.31 (m, 12H). *3C NMR (100 MHz, Methanol-d4) 5 175.92, 80.32, 71.80, 42.65, 36.83,
34.00, 30.64, 30.60, 30.55, 30.40, 30.21, 29.34, 28.05, 26.87. MS (ESI) Calculated for C14H27N2O [M+H"]

239.2; observed 239.2.

Preparation of (2-0x0-2-((11-0x0-11-(prop-2-yn-1-ylamino)undecyl)amino)ethyl)Triphenyl-

phosphonium bromide (11)

Compound SI-2 (22 mg, 0.092 mmol) was dissolved in dry DCM (1 mL) and treated with DIPEA (20 pL,
0.115 mmol) and bromoacetyl bromide (10 pL, 0.115 mmol). After 30 min, the mixture was diluted in brine
(10 mL) and extracted with DCM (10 mL x 3). The organic layers were combined, dried (Na>-SO,) and
concentrated in vacuo to afford the crude product as a yellow oil (20.7 mg, 0.058 mmol, 63%). The yellow
oil above (20.7 mg, 0.058 mmol) was taken in toluene (1 mL) and treated with triphenylphosphine (30.4

mg, 0.115 mmol). After stirring overnight at rt, the mixture was concentrated and dissolved in H,O-ACN
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(2 mL + 2 mL). The title compound 11 was obtained by HPLC purification (5-100% ACN in H-O, eluted
at 18-20 min) followed by lyophilization: (yield calculated as bromide salt) 12.3 mg, 0.020 mmol, 34 %
yield). *H NMR (400 MHz, DMSO-ds) 8 9.53 (brs, 1H), 8.33 (brs, 1H), 7.78 (m, 15H), 5.07 (brs, 2H), 3.82
(dd, J = 5.5, 2.5 Hz, 2H), 3.06 (t, J = 2.5 Hz, 1H), 2.93 (g, J = 6.3 Hz, 2H), 2.07 (t, J = 7.4 Hz, 2H), 1.47
(m, 2H), 1.22 (m, 14H). *C NMR (100 MHz, DMSO-de) 5 171.90, 171.90, 134.64, 134.61, 133.83, 133.72,
129.90, 129.77, 81.39, 72.66, 39.02, 35.03, 28.88, 28.83, 28.73, 28.61, 28.60, 28.58, 27.67, 26.20, 25.11.

MS (ESI) Calculated for C34H42N202P [M*] 541.3; observed 541.3.
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680 Preparation of redox-caged sulfenic acids 12-14:
OH NHB
e o(c): + j;((g 1) EDC, DMAP, DCM BocHN\)J\ j;‘/
o) s~ HsN
NHBoc OH L 0 2) TCEP, ACN-H,0
sI-3
CHj; \/u\ \/U\
EtO,C._~ BocHN 1)HCI 60°c BDP-HN
CHs ) BDP-OH, I
CO,Et EDCI DMAP \s
TritonB 304}YcozEt H3C<}Y002Et
4h HsC CO,Et HsC COzEt
Boc-12
H
EtO,C °
255N e, BocHN\)L \/g( 2) ) hopon. BOP- HN\)L \/g(
COEt EDCI DMAP
sI-3 _
T”ﬁoﬂ'B H3C CO,Et ch CO,Et
H H
CO.Et (mixture of diastereomers) CO.Et
Boc-13
PhO,S ) HCI, 60 °C o |
SO,Ph BocHN\)L \/g( ?DBC?PD(,\)A'Z\P BDP-HN\)J\,\I‘/O
|
w/o catalyst s ©
15 min SO,Ph SO,Ph
SO,Ph SO,Ph
Boc-14 14
BDP = i
Y S ;
682  Preparation of Boc-Cys-Val-OMe dipeptide (SI-3)
683 To a Na-flushed flask containing (Boc-Cys-OH), (440.5 mg, 1.0 mmol), L-Valine methyl ester
684  hydrochloride (502.9 mg, 3.0 mmol) in 20 mL dry DCM at 0 °C was added EDCI-HCI (575.1 mg, 3.0 mmol)
685 and DMAP (12.2 mg, 0.1 mmol). The mixture was slowly warmed and stirred at room temperature
686  overnight, diluted with EtOAc (60 mL) washed with sat’'d NaHCO3s (30 mL x 2) and brine (30 mL). The
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organic layer was dried, concentrated and purified by chromatography (20-50% EtOAc in hexane) to
afford the disulfide (Boc-Cys-Val-OMe), as a white solid, which was dissolved in ACN-H,O (15 mL + 15
mL) was added tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCI, 573.3 mg, 2.0 mmol). The
solution was stirred at 37 °C for 5 h. After completion, it was diluted in DCM (20 mL) and washed with
sat’'d NaHCO3 (20 mL x 2) and brine (20 mL), dried (Na>SQO4) and concentrated in vacuo to afford the title
compound SI-3 as a white solid (185.1 mg, 0.553 mmol, 55% yield). *H NMR (400 MHz, CDCls) 5 6.85
(brs, 1H), 5.48 (brs, 1H), 4.51 (dd, J = 8.7, 4.9 Hz, 1H), 4.34 (m, 1H), 3.73 (s, 3H), 3.05 (m, 1H), 2.73 (m,
1H), 2.19 (m, 1H), 1.69 (m, 1H), 1.45 (s, 9H), 0.92 (dd, J = 11.9, 6.9 Hz, 6H). *C NMR (100 MHz, CDCls)
o 172.17, 170.38, 155.69, 80.83, 57.56, 55.69, 52.44, 31.28, 28.47, 26.82, 19.23, 17.92. MS (ESI)

Calculated for C14H26N2NaOsS [M+Na*] 357.1; observed 357.2.

General procedure for the preparation of Boc-protected precursor Boc12-14

To an oven-dried, N2-flushed flask containing 66.8 mg (0.20 mmol) of dipeptide SI-3 in 2 mL dry THF at
-78°C was added Triton-B (8 pL, 40% in methanol, 0.02 mmol) in 2 mL dry THF dropwise, then
corresponding electron-deficient alkene (0.15 mmol) in 2 mL dry THF was added dropwise. The reaction
mixture was then stirred at room temperature until completion of reaction (see scheme above), then
diluted with brine (20 mL) and extracted with DCM (20 mL x 3). The combined organic layers were dried
(Na;S0.), concentrated and purified by chromatography (20-50% EtOAc in hexane) to afford Boc-

protected compounds Boc12-14.

Diethyl 2-(2-(((R)-2-((tert-butoxycarbonyl)amino)-3-(((S)-1-methoxy-3-methyl-1-oxobutan-2-

yl)amino)-3-oxopropyl)thio)propan-2-yl)malonate (Boc-12)

Compound Boc-12 was prepared as a colorless oil, 34.6 mg, 0.065 mmol, 43% yield. *H NMR (400 MHz,
CDCls) 6 6.97 (brs, 1H), 5.49 (brs, 1H), 4.47 (dd, J = 8.7, 4.9 Hz, 1H), 4.18 (m, 4H), 3.70 (s, 3H), 3.04

(dd, J = 12.9, 6.6 Hz, 1H), 2.88 (dd, J = 12.9, 6.1 Hz, 1H), 2.15 (m, 1H), 1.55 (s, 3H), 1.53 (s, 3H), 1.43
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(s, 9H), 1.25 (td, J = 7.1, 2.3 Hz, 6H), 0.91 (dd, J = 8.9, 6.9 Hz, 6H). 13C NMR (100 MHz, CDCls) 8 171.91,
170.49, 167.36, 167.12, 80.40, 61.53, 61.45, 60.41, 57.42, 52.12, 46.06, 31.29, 30.32, 28.34, 26.88,

26.54,19.02, 17.77, 14.11. MS (ESI) Calculated for C24HssN206S [M+H*] 535.3; observed 535.3.

Diethyl 2-(1-(((R)-2-((tert-butoxycarbonyl)amino)-3-(((S)-1-methoxy-3-methyl-1-oxobutan-2-

yl)amino)-3-oxopropyl)thio)ethyl)malonate (Boc-13)

Compound Boc-13 was isolated as an inseparable mixture of diastereomers. Off-white solid, 54.8 mg,
0.105 mmol, 70% yield. *H NMR (400 MHz, CDCls) & 7.05, 6.97 (brs, 1H), 5.63, 5.48 (brs, 1H), 4.50 (m,
1H), 4.40, 4.31 (m, 1H), 4.21 (m, 4H), 3.72, 3.70 (s, 3H), 3.51 (m, 2H), 2.92 (m, 2H), 2.17 (m, 1H), 1.45,
1.45 (s, 9H), 1.41, 1.39 (s, 3H), 1,27, 1.27 (t, J = 7.1 Hz, 6H), 0.94, 0.91 (t, J = 8.6 Hz, 6H). 3C NMR
(100 MHz, CDCls) 8 172.00, 171.89, 170.70, 170.55, 168.00, 167.69, 167.42, 80.47, 80.21, 61.85, 61.79,
58.28, 58.17, 57.60, 57.41, 52.22, 52.13, 40.11, 38.83, 31.35, 31.17, 28.40, 28.36, 20.11, 20.08, 19.07,

17.85, 17.80, 14.16. MS (ESI) Calculated for C23H41N20¢S [M+H*] 521.3; observed 521.3.

Methyl S-(2,2-bis(phenylsulfonyl)ethyl)-N-(tert-butoxycarbonyl)-L-cysteinyl-L-valinate (Boc-14)

Compound Boc-14 was prepared as a white solid, 85.1 mg, 0.133 mmol, 88% yield. *H NMR (400 MHz,
CDCls) & 8.08 (m, 4H), 7.71 (m, 2H), 7.58 (m, 4H), 7.07 (d, J = 8.8 Hz, 1H), 5.52 (m, 2H), 4.51 (m, 2H),
3.74 (s, 3H), 3.59 (dd, J = 16.2, 4.7 Hz, 1H), 3.16 (dd, J = 15.9, 6.6 Hz, 1H), 2.93 (dd, J = 14.6, 6.8 Hz,
1H), 2.74 (dd, J = 14.7, 6.6 Hz, 1H), 2.20 (m, 1H), 1.50 (s, 9H), 0.92 (dd, J = 15.1, 6.9 Hz, 6H). 23C NMR
(100 MHz, CDCl3) 6 172.01, 170.44, 155.67, 138.06, 137.05, 134.93, 134.68, 130.24, 129.85, 129.18,
129.13, 83.23, 80.33, 57.59, 53.62, 52.26, 37.44, 30.83, 28.44, 19.12, 17.65. MS (ESI) Calculated for

CasH39N200S3 [M+H*] 643.2 observed 643.3.
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General procedure for the preparation of fluorescent redox-caged sulfenic acids 12-14

Boc12-14 (0.05 mmol) was treated with 2 mL HCI (4.0 M solution in dioxane) and microwaved at 60 °C
for 20 min. After cooling, the solution was concentrated in vacuo, taken in DCM (10 mL) and washed with
sat’'d NaHCO3 solution (10 mL). The aqueous layer was extracted with DCM (10 mL x 2). Combined
organic solutions were dried (Na-SO,) and concentrated in vacuo. The product above and 3-BODIPY-
propanoic acid (0.05 mmol) was dissolved in dry DCM at 0 °C, followed by addition of EDCI-HCI (0.05
mmol) and DMAP (0.01 mmol). The mixture was slowly warmed to room temperature while stirring for 3
h. After completion, the mixture was diluted with DCM (10 mL) and washed with sat'd NaHCO3 (10 mL)
and brine (10 mL). The organic layer was dried (Na:SOs), concentrated and purified by flash

chromatography (10-50% EtOAc in hexane) to afford compound 12-14.

Diethyl 2-(2-(((R)-2-(3-(5,5-difluoro-7,9-dimethyl-5H-5A%,6A*-dipyrrolo[1,2-c:2',1'-
f][1,3,2]diazaborinin-3-yl)propanamido)-3-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-3-

oxopropyDthio)propan-2-yl)malonate (12)

Compound 12 was prepared as a dark red solid, 19.8 mg, 0.028 mmol, 56% vyield. *H NMR (400 MHz,
CDCl3) 8 7.15 (d, J = 8.6 Hz, 1H), 7.07 (s, 1H), 6.86 (d, J = 4.0 Hz, 1H), 6.78 (d, J = 6.8 Hz, 1H), 6.28 (d,
J = 4.1 Hz, 1H), 6.10 (s, 1H), 4.61 (td, J = 7.1, 5.8 Hz, 1H), 4.44 (dd, J = 8.6, 5.0 Hz, 1H), 4.20 (m, 4H),
3.79 (s, 1H), 3.71 (s, 3H), 3.30 (t, J = 7.5 Hz, 2H), 3.02 (dd, J = 13.6, 5.8 Hz, 1H), 2.72 (m, 3H), 2.55 (s,
3H), 2.24 (s, 3H), 2.17 (m, 1H), 1.58 (s, 3H), 1.55 (s, 3H), 1.26 (t, J = 7.1 Hz, 6H), 0.93 (t, J = 6.7 Hz, 6H).
13C NMR (100 MHz, CDCl3) d 172.28, 171.83, 170.33, 167.82, 167.31, 160.52, 157.31, 143.96, 135.32,
133.50, 128.23, 123.91, 120.55, 117.28, 61.69, 61.55, 60.48, 57.75, 53.09, 52.18, 46.33, 35.52, 31.05,
30.17, 27.05, 26.37, 24.69, 19.14, 17.87, 15.06, 14.15, 11.42. MS (ESI) Calculated for C3s3HasBF2N4OsS

[M+H*] 709.3 observed 709.3.
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Diethyl 2-(1-(((R)-2-(3-(5,5-difluoro-7,9-dimethyl-5H-5A*,6A*-dipyrrolo[1,2-c:2',1'-
f][1,3,2]diazaborinin-3-yl)propanamido)-3-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)amino)-3-

oxopropyl)thio)ethyl)malonate (13)

Compound 13 was isolated as an inseparable mixture of diastereomers. Dark red solid, 15.0 mg, 0.022
mmol, 43% yield. 'H NMR (400 MHz, CDCls) 8 7.15; 7.07 (d, J = 8.7 Hz, 1H), 7.07 (s, 1H), 6.87 (m, 1H),
7.03; 6.66 (d, J = 7.0 Hz, 1H), 6.30; 6.27(d, J = 4.1 Hz, 1H), 6.10 (s, 1H), 4.71 (m, 1H), 4.46 (m, 1H), 4.20
(m, 4H), 3.71; 3.70 (s, 3H), 3.55 (m, 2H), 3.32 (m, 2H), 3.17; 2.93 (dd, J = 14.1, 4.6 Hz, 1H), 2.69 (m,
3H), 2.55 (m, 3H), 2.24 (s, 3H), 2.17 (m, 1H), 1.43; 1.41 (d, J = 2.3 Hz, 3H), 1.26 (m, 6H), 0.93 (s, 6H).
13C NMR (100 MHz, CDCls) 6 172.52, 171.89, 171.78, 171.75, 170.47, 170.36, 168.46, 168.10, 167.77,
167.55, 160.56, 157.48, 157.30, 143.97, 135.34, 133.51, 128.20, 123.92, 120.54, 117.28, 67.23, 62.04,
61.89, 58.33, 57.92, 57.86, 57.64, 53.39, 52.27, 52.23, 52.15, 40.52, 38.70, 35.73, 35.41, 33.28, 32.33,
31.13, 31.00, 24.70, 20.12, 19.14, 19.13, 17.92, 17.86, 15.07, 14.19, 14.16, 14.13, 11.44. MS (ESI)

Calculated for C32H4sBF2N4OsS [M+H*] 694.3 observed 694.3.

Methyl  S-(2,2-bis(phenylsulfonyl)ethyl)-N-(3-(5,5-difluoro-7,9-dimethyl-5H-5A* 6A*-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-3-yl)propanoyl)-L-cysteinyl-L-valinate (14)

Compound 14 was prepared as a dark red solid, 17.3 mg, 0.021 mmol, 42% yield. *H NMR (400 MHz,
CDCls) 8 8.12 (m, 2H), 8.07 (m, 2H), 7.68 (m, 2H), 7.58 (m, 4H), 7.09 (s, 2H), 6.88 (d, J = 4.1 Hz, 1H),
6.53 (d, J = 7.8 Hz, 1H), 6.28 (d, J = 4.0 Hz, 1H), 6.12 (s, 1H), 5.83 (dd, J = 6.5, 4.9 Hz, 1H), 4.87 (dt, J
=7.9, 6.7 Hz, 1H), 4.45 (dd, J = 8.7, 4.7 Hz, 1H), 3.74 (s, 3H), 3.63 (dd, J = 16.1, 4.9 Hz, 1H), 3.34 (t, J
= 7.6 Hz, 2H), 3.18 (dd, J = 16.0, 6.5 Hz, 1H), 2.91 (dd, J = 14.8, 6.7 Hz, 1H), 2.70 (m, 3H), 2.57 (s, 3H),
2.25 (s, 3H), 2.20 (m, 1H), 0.91 (dd, J = 13.7, 6.9 Hz, 6H). 1*C NMR (100 MHz, CDCI3) & 171.92, 171.89,
170.25, 160.69, 157.08, 144.13, 138.00, 137.14, 135.42, 134.93, 134.69, 133.49, 130.30, 129.93, 129.23,

129.21, 128.26, 124.00, 120.65, 117.11, 82.89, 77.36, 57.75, 52.34, 52.32, 37.73, 35.31, 30.73, 28.64,
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24.51, 19.20, 17.66, 15.11, 11.46. MS (ESI) Calculated for Cs7H44BF2N4OsSs [M+H'] 817.2 observed

817.2.

Preparation of redox-caged CoQ10 (Compound 19)

B H
© " 4)KkSAc, DMF 1O S
(I) 0 2) LiAIH,, THF (I) OH
O O Sl-4
CO,Et CO,Et
—
co,et HO s CO,Et
B ———S—————
H
. o) OH CHs
Triton-B [
(2 mol%) O 19

2-(10-mercaptodecyl)-5,6-dimethoxy-3-methylbenzene-1,4-diol (SI-4)

2-(10-bromodecyl)-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione’ (100 mg, 0.25 mmol) in 2 mL
DMF was treated with potassium thioacetate (45 mg, 0.40 mmol). After stirring at room temperature for
15 min, the mixture was diluted in H>.O (15 mL) and extracted with EtOAc (15 mL x 3), dried (Na;SO.)
and concentrated. The residue was taken in EtOH and filtered. The filtrate was concentrated again to
give the crude thioacetate product as a yellow oil, which was re-dissolved in 5 mL dry THF. The resulting
solution was cooled to -78 °C and LiAlH4 (0.6 mL, 1.0 M in ether, 0.60 mmol) was added dropwise. After
slowly warming to room temperature (30 min), the mixture was carefully quenched with 1.0 M HCI (2 mL),
extracted with EtOAc (15 mL x 3), dried (Na,S0O4) and concentrated. The product was purified by flash
chromatography (10-30% EtOAc in hexane) to afford the title compound SI-4 as a yellow oil (62.5 mg,
0.176 mmol, 70% yield). *H NMR (400 MHz, CDClz) & 3.89 (s, 6H), 2.59 (m, 2H), 2.53 (q, J = 7.5 Hz, 2H),
2.16 (s, 3H), 1.61 (m, 2H), 1.48 (m, 2H), 1.34 (m, 13H). 3C NMR (100 MHz, CDCls) 5 140.13, 139.94,
136.75, 136.73, 123.40, 117.81, 60.91, 60.85, 34.17, 29.99, 29.66, 29.63, 29.63, 29.59, 29.19, 28.49,
26.45, 24.78, 11.27. MS (ESI) Calculated for C19H3304S [M+H*] 357.2; observed 357.2.
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Diethyl 2-(1-((10-(2,5-dihydroxy-3,4-dimethoxy-6-methylphenyl)decyl)thio)ethyl)malonate (19)

In a N2-flushed oven-dried flask, compound SI-4 (62.5 mg, 0.176 mmol) was dissolved in 2 mL dry THF.
The solution was cooled to -78 °C, followed by dropwise addition of triton-B (40% w/w in MeOH, 1.6 pL,
3.52 pmol) in 1 mL dry THF, and diethyl 2-ethylidenemalonate (36.0 mg, 0.194 mmol) in 1 mL dry THF.
The mixture was slowly warmed to 55 °C and stirred for 6 h, concentrated in vacuo, and purified by flash
chromatography (10-50% EtOAc in hexane) to afford the title compound 19 as a yellow oil (59.1 mg,
0.109 mmol, 62% yield). *H NMR (400 MHz, CDCls) 5 5.34 (d, J = 20.9 Hz, 2H), 4.22 (m, 4H), 3.89 (s,
6H), 3.49 (d, J = 9.2 Hz, 1H), 3.37 (m, 1H), 2.57 (m, 4H), 2.15 (s, 3H), 1.56 (m, 2H), 1.46 (m, 2H), 1.31
(m, 21H). 13C NMR (100 MHz, CDCls) 5 167.85, 167.71, 140.12, 139.94, 136.75, 136.72, 123.38, 117.77,
61.68, 61.66, 60.91, 60.85, 58.54, 39.35, 31.17, 30.00, 29.72, 29.68, 29.64, 29.64, 29.60, 29.33, 29.06,

26.45, 20.03, 14.20, 14.20, 11.27. MS (ESI) Calculated for C2sH4sNaOsS [M+Na*] 565.3; observed 565.3.

Preparation of WittigQ (20)

1) NaCIO 0 s
\HJ\OEt
19 >
PPh
(0] (@] (0} 20 R
2) PhaPs L oL oh-
OEt
4

Compound 19 (30 mg, 0.055 mmol) was dissolved in 5 mL ACN-H,0 (1:2), and treated with NaCIO (0.055
mmol). With brief mixing, Wittig-CO.Et (compound 4, 0.55 mmol) was immediately added. The mixture
was stirred at room temperature for 2 h, concentrated in vacuo and purified by prep-HPLC (5-100% ACN
in H20) to afford the title compound 20 as a yellow oil (19.9 mg, 0.028 mmol, 50%). Note 1: The quinol
moiety was oxidized to quinone under aerobic conditions. Note 2: At smaller scale (50 pM of 19 and
NaClO, 500 uM of 4, when NaClO was administrated slowly over 30 min via a syringe injector, the
reaction yield was >90% as determined by LC-MS. *H NMR (400 MHz, CDCl3) 8 7.46 (m, 15 H), 4.12 (m,
2H), 3.99 (d, J = 0.6 Hz, 6H), 2.45 (t, J = 7.8 Hz, 2H), 2.15 (m, 2H), 2.02 (s, 3H), 1.26 (m, 19H). 13C NMR
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824 (100 MHz, CDClz) & 184.88, 184.32, 144.47, 143.25, 138.81, 134.09, 133.99, 131.89, 131.86, 128.51,
825 128.39,61.30, 30.02, 29.66, 29.65, 29.55, 29.49, 29.12, 28.91, 28.59, 26.57, 12.07. MS (ESI) Calculated

826  for C41Hs006PS [M*] 701.3; observed 701.2.
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