

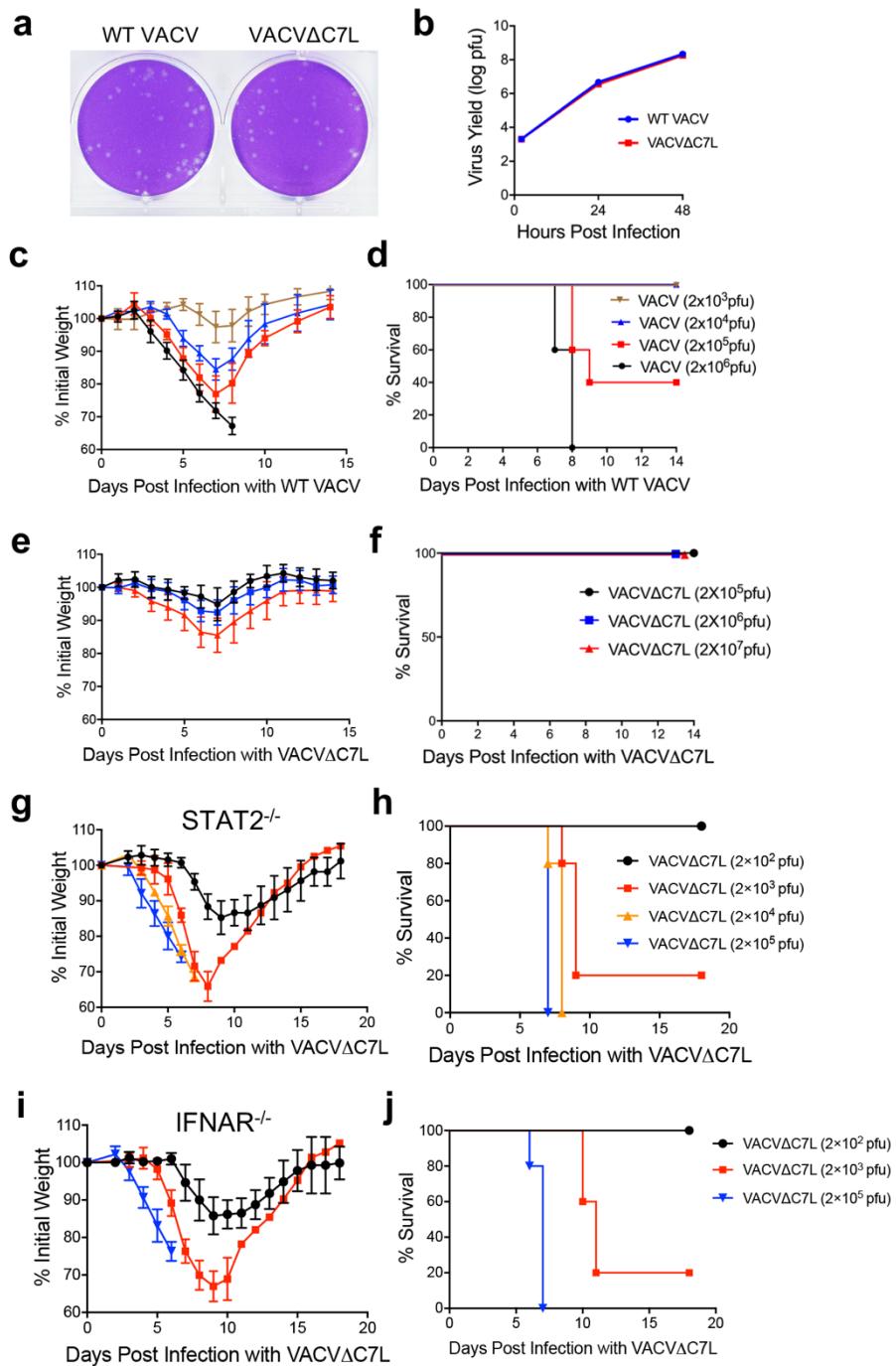
Supplementary Information

Lung type II alveolar epithelial cells collaborate with CCR2⁺ inflammatory monocytes in host defense against poxvirus infection

Ning Yang^{1*}, Joseph M. Luna², Peihong Dai¹, Yi Wang¹, Charles M. Rice², and Liang Deng^{1,2,3*#}

¹Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

²The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States.


³Weill Cornell Medical College, New York, New York, USA.

*Corresponding authors. [#]Lead contact.

This file contains:

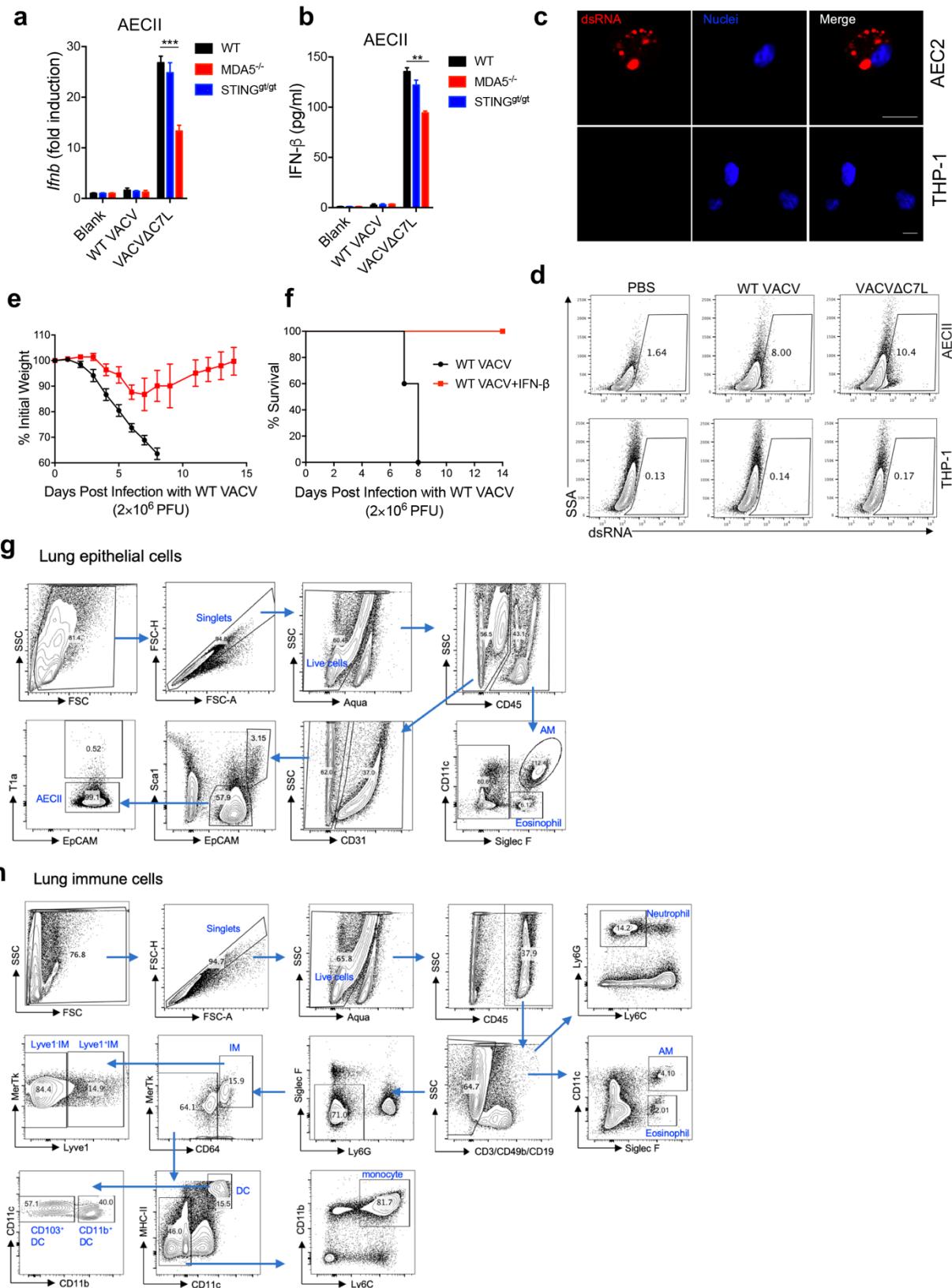

- Supplementary Fig. 1
- Supplementary Fig. 2
- Supplementary Fig. 3
- Supplementary Fig. 4
- Supplementary Fig. 5
- Supplementary Table 1

Figure S1.

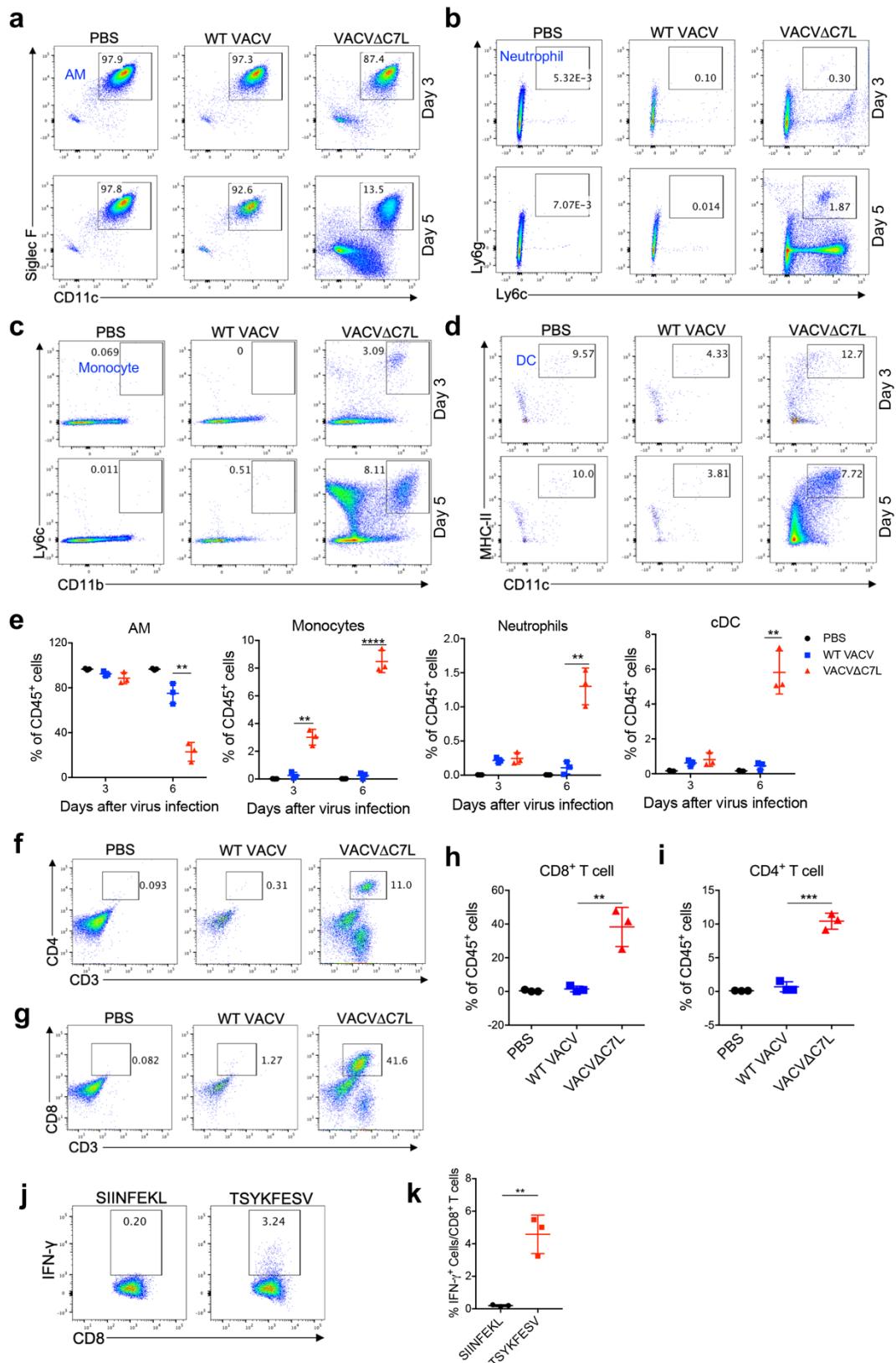

Supplementary Fig. 1 Determination of LD50 of WT VACV or VACV Δ C7L intranasal infection in WT, STAT2 $^{-/-}$ or IFNAR1 $^{-/-}$ mice. **a** Plaque sizes of WT VACV and VACV Δ C7L at day 2 post-infection in BSC40 cells. **b** Viral growth curve in BSC40 cells at an initial MOI of 0.05. **c-d** Percentages of initial weight (**c**) and Kaplan-Meier survival curve (**d**) of WT C57BL/6J control mice (n=5 in each group) over days post intranasal infection with WT VACV at different doses. **e-f** Percentages of initial weight (**e**) and Kaplan-Meier survival curve (**f**) of WT C57BL/6J control mice (n=5 in each group) over days post intranasal infection with VACV Δ C7L at different doses. **g-j** STAT2 $^{-/-}$ or IFNAR1 $^{-/-}$ mice were infected with VACV Δ C7L intranasally at different doses. Mice were monitored for weight daily. **g, i** Percentages of initial weight over days in STAT2 $^{-/-}$ (**g**) or IFNAR1 $^{-/-}$ mice (**i**) post intranasal infection with VACV Δ C7L at increasing doses. **h, j** Kaplan-Meier survival curve of STAT2 $^{-/-}$ (**h**) or IFNAR1 $^{-/-}$ mice (**j**) infected with VACV Δ C7L at increasing doses (n=5 in each group). Data are representative of two independent experiments.

Figure S2.

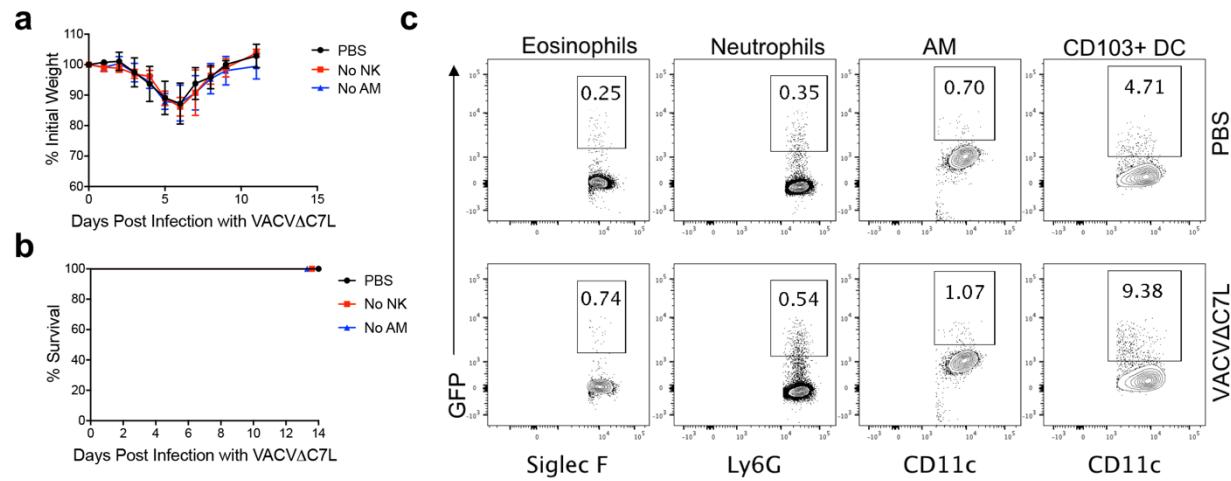

Supplementary Fig. 2. DsRNA was produced in AECIIs after VACVΔC7L infection and intranasal administration of IFN- β rescues mice from lethal WT VACV infection. **a** AECII were generated through culturing lineage negative epithelial progenitor cells isolated from WT, STING^{Gt/Gt}, or MDA5^{-/-} mice as described in Fig. 2. RT-PCR analyses of Ifnb gene expression of AECIIs infected with either WT VACV or VACVΔC7L at a MOI of 5 for 12 h. PBS was used as a mock infection control. **b** ELISA analyses of IFN- β levels in the supernatants of AECIIs infected with either WT VACV or VACVΔC7L at a MOI of 5 for 24 h. PBS was used as a mock infection control. **c** Representative confocal images showing dsRNA staining in AECIIs or THP-1 cells infected with VACVΔC7L at a MOI of 5 for 16 h. Scale bar, 10 μ m. **d** FACS analysis of dsRNA from AECIIs or THP-1 cells infected with VACVΔC7L at a MOI of 5 for 16 h. **e-f** C57BL/6J mice were infected with WT VACV at 2×10^6 pfu. They were either treated with intranasal administration of IFN- β (1 μ g/mouse) or PBS at day one post infection, shown are percentages of initial weight (**e**) and Kaplan-Meier survival curve (**f**) over days. (n=5 in each group). ** p<0.01, and *** p<0.001 (unpaired t test). Data are representative of two independent experiments and represented as mean \pm SD. **g-h** Gating strategy to define epithelial cells and myeloid cell populations in the lung. Within the single cell suspension, doublets and dead cells were excluded from analysis. **g** Among CD45⁻ cells, CD31⁺ cells represent endothelial cells. Among CD31⁺ cells, after excluding bronchioalveolar stem cells (BASCs), EpCAM⁺Sca1⁻ cells represent lung epithelial cells and AECIIs are further defined as EpCAM⁺T1a⁻. **h** Among CD45⁺ cells, Siglec F⁺ CD11c⁺ cells represent alveolar macrophages (AMs). Siglec F⁺ CD11c⁻ cells represent eosinophils. Neutrophils are defined as Ly6G⁺ Ly6C⁻ cells. After excluding Siglec F⁺, Ly6G⁺, CD3⁺, CD49b⁺, CD19⁺ cells, CD64⁺MerTk⁺ cells represent interstitial macrophages (IMs), which can be further divided into Lyve1⁺ IMs and Lyve1⁻ IMs. Among CD64⁺MerTk⁻ cells, DCs are defined as MHC-II⁺ CD11c⁺ cells. Monocytes are defined as Ly6C⁺ CD11b⁺ cells.

Figure S3.

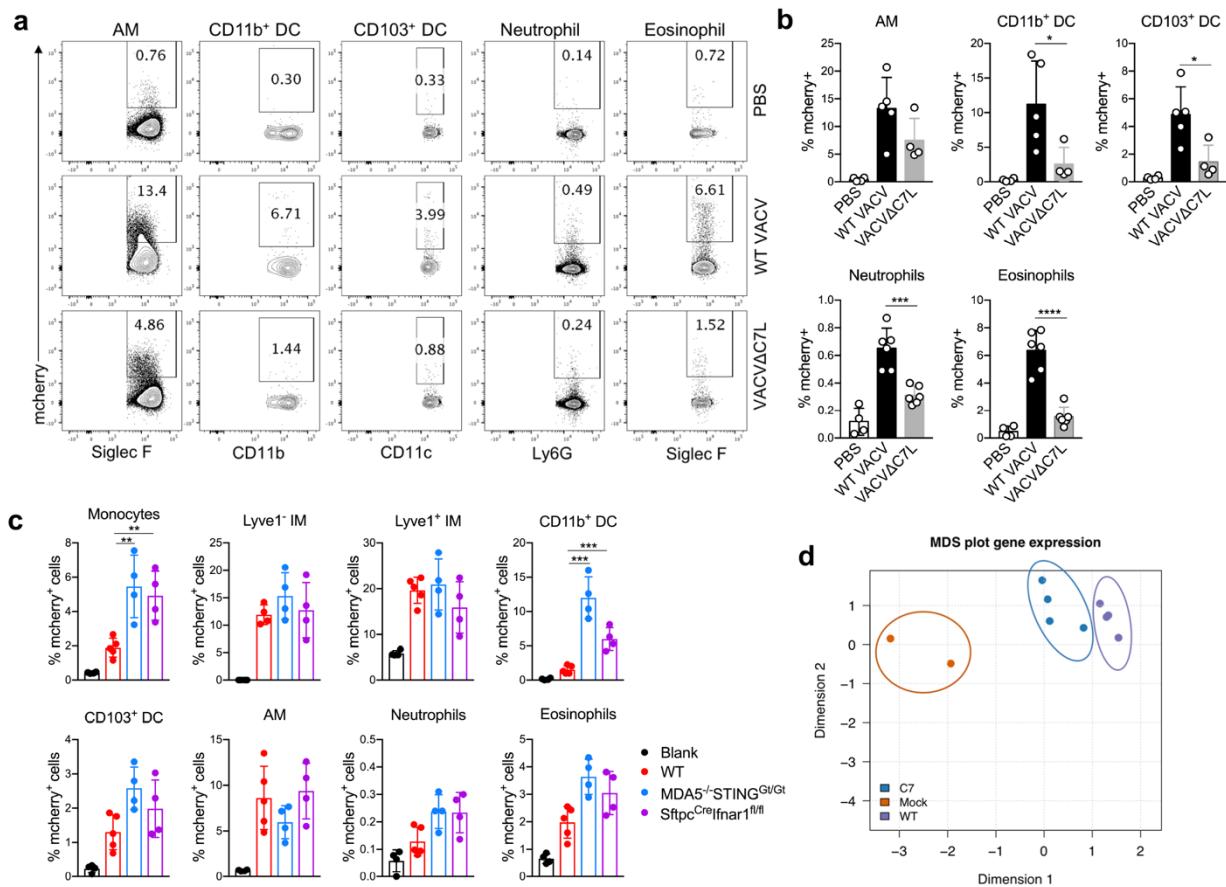

Supplementary Fig. 3 Intranasal infection of VACVΔC7L results in the influx of dendritic cells (DCs), monocytes, neutrophils, CD8⁺, and CD4⁺ T cells into bronchoalveolar space of the infected lungs. WT C57BL/6J mice were infected with either WT VACV at 2×10^5 pfu or with VACVΔC7L at 2×10^7 pfu, or mock-infected with PBS. BAL was collected at day 3 and day 5 post infection or PBS treatment. Myeloid cell populations in the BAL were analyzed by FACS. **a** Dot plots of Siglec F⁺CD11c⁺ lung alveolar macrophages in the BAL from mice infected with either WT VACV, VACVΔC7L, or mock infected. **b** Dot plots of Ly6G⁺Ly6C⁺ neutrophils in the BAL from mice infected with either WT VACV, VACVΔC7L, or mock infected. **c** Dot plots of Ly6C⁺CD11b⁺ inflammatory monocytes in the BAL from mice infected with either WT VACV, VACVΔC7L, or mock infected. **d** Dot plots of MHCII⁺CD11c⁺ DCs in the BAL from mice infected with either WT VACV, VACVΔC7L, or mock infected. **e** Quantification of data from **(a-d)** with independent experimental replicates. **f-g** Dot plots of CD4⁺ or CD8⁺ T cells in the BAL from mice at day 5 post infected with either WT VACV, VACVΔC7L, or mock infected. **h-i** Quantification of data from **(f-g)** with independent experimental replicates. **J** Dot plots of B8R specific CD8⁺ T cells in BAL from mice at day 5 post infected with VACVΔC7L. SIINFEKL as non-specific peptide control. **k** Quantification of data from **J**. ** p<0.01, *** p<0.01, and **** p<0.0001 (unpaired t test). Data are representative of two **(f-k)** or three **(a-e)** independent experiments.

Figure S4.

Supplementary Fig. 4 Alveolar macrophages and NK cells are not required for host defense against VACV Δ C7L infection. **a-b** Percentages of initial weight (**a**) and Kaplan-Meier survival curve (**b**) over days in WT C57BL/6J mice, NK cell depletion mice or AM depletion mice infected with VACV Δ C7L at 2×10^7 pfu. (n=5 in each group). **c** Dot plots showing GFP $^{+}$ eosinophils, GFP $^{+}$ neutrophils, and GFP $^{+}$ AM and GFP $^{+}$ CD103 $^{+}$ DCs in the lungs of CCR2-GFP mice at day 3 post infection with VACV Δ C7L at 2×10^7 pfu compared with PBS-mock infected mice. Data are representative of two independent experiments.

Figure S5.

Supplementary Fig. 5 CCR2⁺ inflammatory monocytes and IMs are the main cell populations infected by vaccinia virus. **a-b** Representative flow cytometry dot plots (**a**) and bar graph (**b**) showing mcherry⁺ of different cell populations in the lungs of C57BL/6J mice at day 3 post infection with WT VACV-mcherry, VACVΔC7L-mcherry at 2 x 10⁷ pfu or PBS-mock infected mice. **c** bar graph showing mcherry⁺ of different cell populations in the lungs of C57BL/6J, MDA5^{-/-}STING^{Gt/Gt} or Sftpc^{cre}Ifnar1^{fl/fl} mice at day 3 post infection with VACVΔC7L-mcherry at 2 x 10⁷ pfu. PBS-mock infected C57BL/6J mice as blank control. **d** Multidimensional scaling (MDS) plot of RNAseq results in monocytes. * p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001 (unpaired t test). Data are representative of two (**a-d**) independent experiments and presented as mean ± SD.

Supplementary Table 1. List of primers used in this paper for qRT-PCR.

Primer sequence	SOURCE
qPCR <i>Ifnb</i> For: TGGAGATGACGGAGAAGATG	Integrated DNA technologies IDT
qPCR <i>Ifnb</i> Rev: TTGGATGGCAAAGGCAGT	
qPCR <i>Ccl4</i> For: GCCCTCTCTCCTCTTGCT	
qPCR <i>Ccl4</i> Rev: CTGGTCTCATAGTAATCCATC	
qPCR <i>Gapdh</i> For: AGGTCGGTGTGAACGGATTG	
qPCR <i>Gapdh</i> Rev: TGTAGACCATGTAGTTGAGGTCA	
qPCR <i>Ccl5</i> For: GCCCACGTCAAGGAGTATTCTA	
qPCR <i>Ccl5</i> Rev: ACACACTTGGCGGTTCCCTTC	
qPCR <i>E5</i> For: TCTCGGACATTCAGCCATC	
qPCR <i>E5</i> Rev: GGAAACATGAAAGCAGCAGAG	
qPCR A34 For: GGCATAGGAACATTTCTGCATTAC	
qPCR A34 Rev: TACGACACTGATAAACCGCATT	
qPCR A27 For: CCGTCCAGTCTGAACATCAAT	
qPCR A27 Rev: GTGTTGAAACGCAACGATGAA	