

576 **Understanding and recognition of the right ventricular function and dysfunction: A numerical study**
577 Giulia Comunale^{1*}, Paolo Peruzzo¹, Biagio Castaldi², Renato Razzolini³, Giovanni Di Salvo², Massimo A.
578 Padalino⁴, Francesca M. Susin¹.
579 ¹ Cardiovascular Fluid Dynamics Laboratory HER, Department of Civil, Environmental and Architectural
580 Engineering – University of Padova, Italy.
581 ² Department of Women's and Children's Health, University of Padova Medical School, Italy.
582 ³ Cardiology Unit, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of
583 Padova Medical School, Italy.
584 ⁴ Paediatric and Congenital Cardiovascular Surgery Unit, Department of Cardio-thoracic and Vascular
585 Sciences and Public Health, University of Padova Medical School, Italy.

586
587
588 *Supplementary Information*

589
590
591
592
593
594

595 **METHODS**596 *Hemodynamic model*

597 To simulate the blood circulation, we used the lumped parameters methodology. It allows to represent the
 598 vascular compartments of the body, i.e., any vascular segment that it is necessary to describe, by pressure and
 599 flow rate, and the heart. This methodology is widely used to simulate the whole cardiovascular system since
 600 the Windkessel model proposed by Otto Frank in 1899 which approximates the hemodynamics of the systemic
 601 circulation¹¹⁻¹³. Pressures and flows are obtained by computing the Navier-Stokes and mass conservation
 602 equations averaged over the domain¹⁴. The vascular compartments are described by lumped parameters able
 603 to represent the geometrical and physical features. Resistances (R) represent the resistance to flow due to blood
 604 viscosity, compliances (C) reproduce the elastic properties of the vessels, and the inductances (L) reflect the
 605 flow inertia. By the combination of these parameters, any section of the vascular system can be considered.
 606 Particularly, supplementary Fig. S1 represents an example of a compartment, described by

$$607 \begin{cases} C \frac{dP_j}{dt} = Q_j - Q_{j+1} \\ L \frac{dQ_{j+1}}{dt} = P_j - P_{j+1} - RQ_{j+1} \end{cases} \quad (S1)$$

608 where (P_j, Q_j) and (P_{j+1}, Q_{j+1}) are the upstream and downstream pressures and flow rates, respectively. In
 609 this work, the great vessels were reproduced considering the compliance and resistance effects, and the
 610 vascular bed was represented by the resistance effect (supplementary Fig. S2). This holds for both the systemic
 611 and pulmonary circulations. This choice allows to reproduce the elastic properties and small dissipative effects
 612 of the arteries and veins, and the dissipation effects that characterize the small vessels of the vascular bed.
 613 Finally, the heart valves were represented as an ideal diode associated to a resistance. They open and close
 614 instantaneously and they allow the blood to flow through only when there is a positive pressure gradient across
 615 them, forcing a unidirectional flow. The equation is

$$616 Q = \begin{cases} \frac{P_j - P_{j+1}}{R}, & \text{if } P_j - P_{j+1} \geq 0 \\ 0, & \text{otherwise.} \end{cases} \quad (S2)$$

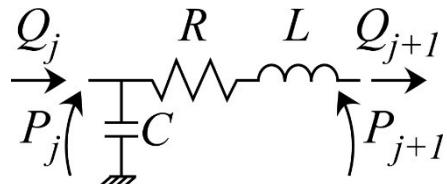
617 with P_j and P_{j+1} the pressure upstream and downstream, respectively, R the valve resistance and Q the flow
 618 rate.

619 Note that, the present model does not account for chamber interaction via spets⁵⁹⁻⁶¹.

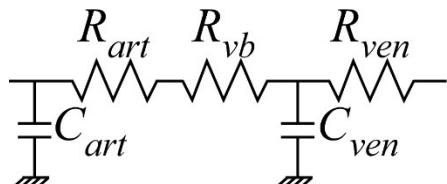
620 *Time-varying elastance*

621 To simulate the right ventricular dysfunction, the right time-varying elastances were modified. Supplementary
622 Fig. S3 shows the right time-varying elastance for the systolic, diastolic, and combined dysfunctions, resulted
623 from the change of the parameters of Eq. (1), as described in Section Dysfunctional case. In the systolic
624 dysfunction (Fig. S3a), $E_{max_{RV}}$, the maximum contraction force, decreases linearly with p increasing, from
625 0.45 mmHg/mL in the healthy condition to the minimum value of $E_{min_{RV}}$ for the complete impairment
626 ($E_{min_{RV}} = 0.035$ mmHg/mL). At the same time, the ejection time increases as well as the acceleration time,
627 resulting in a delayed of the peak as the pathology worsens. On the contrary, in the diastolic dysfunction (Fig.
628 S3b), $E_{max_{RV}}$ is rather constant and the systolic phase slightly varies with p , ranging between the 37% and the
629 40% of the heartbeat. However, an increase of ventricular stiffness and the decrease of the deceleration times
630 are due to larger value of $E_{min_{RV}}$ and $m_{z_{RV}}$, respectively. Finally, in the combined dysfunction (Fig. S3c) the
631 combination of the previous effects is visible.

632 *Sensitivity analysis*


633 A sensitivity analysis as in Mynard¹⁸ was conducted to evaluate the sensitivity of the model. Input parameters
634 were increased by 25%, one at a time, assessing the changes in the outputs. The sensitivity was computed
635 considering the mean value of the outputs over one heartbeat as

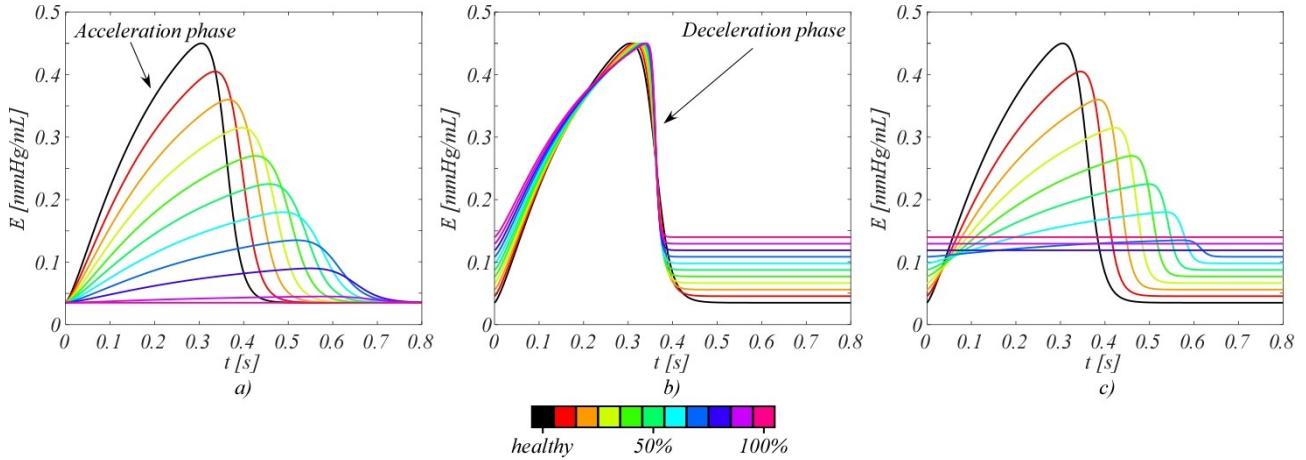
$$636 S = \frac{mean(Y_1) - mean(Y)}{mean(Y)} \left(\frac{X}{X_1 - X} \right) \quad (S6)$$


637 where X and X_1 are the input at baseline and 25% increased value, respectively, and Y and Y_1 are the outputs
638 with baseline and 25% increased inputs, respectively. Note that a positive value of S indicates that an increase
639 in X determines an increase in Y , whereas, a negative value of S shows that an increase in X causes a decrease
640 in Y ¹⁸. Particularly, we evaluated 16 inputs and 20 outputs of the model. Table S2 reports the results. The
641 inputs are ordered considering the global influence, i.e., as the sum of $|S|$ for all the outputs analyzed, showing
642 the most influential on the left. The outputs are ordered based on the overall sensitivity, computed as the
643 median value of $|S|$ for all the inputs, with the most sensitive at the top. Supplementary Fig. S4 shows the
644 outputs listed on the horizontal axis and inputs listed on the vertical axis. Note that in the figure, the outputs
645 are ordered with the most sensitive on the left, and the inputs are ordered with the most influential at the
646 bottom. The most influential parameters are those related to the heart chamber contractility. These parameters

647 are known from the physiology to affect pressures and flows, however, interestingly, the contractility of LV is
 648 less influential than that of the other heart chambers. This may be due to the extended research attention posed
 649 on LV compared to the other heart chambers, suggesting that the left ventricular parameters are better
 650 estimated. Thus, the higher sensitivity of RA, RV, and LA parameters suggests that more attention needs to be
 651 posed when calibrating these heart chambers to derive pertinent values and be able to simulate real cases. The
 652 most sensitive outputs are those related to the systemic arterial side and the volumes, that are directly linked
 653 to the heart chamber contractility. Moreover, only few output variables are sensitive to the variation of inputs,
 654 and this is clearly visible from Supplementary Fig. S4 that shows a cluster of larger data points in the left side.
 655 The least sensitive outputs signals are the right ventricular and pulmonary venous pressures, and this could be
 656 related to the reservoir functionality of the high-compliance pulmonary circulation.

657 **FIGURES**

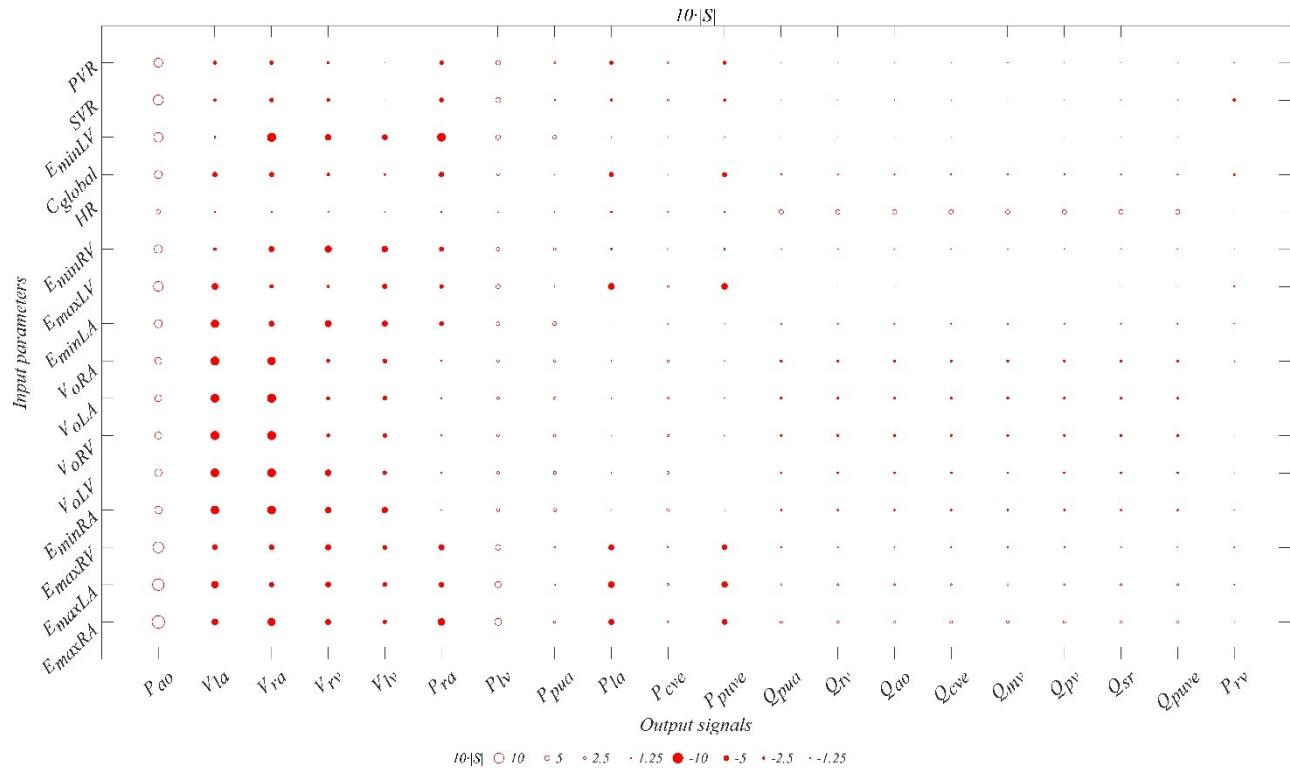
659 **Fig. S1.** Example of lumped parameter compartment. R , resistance, C , compliance, L , inductance, (P_j, Q_j) and
 660 (P_{j+1}, Q_{j+1}) the upstream and downstream pressures and flow rates, respectively.



663 **Fig. S2.** Lumped parameter compartment used in the present work to represent the systemic and pulmonary
 664 circulations. The arterial and venous sides are composed by a resistance and a compliance (R_{art}, C_{art}) and
 665 (R_{ven}, C_{ven}), respectively, whereas the vascular bed is represented by a resistance (R_{vb}).

666

667


668

669

670 **Fig. S3.** Right ventricular activation function. *a)* systolic dysfunction, *b)* diastolic dysfunction, and *c)*
671 combined systolic and diastolic dysfunction. Black line: healthy RV ($p=0\%$); coloured lines: RV systolic
672 impairment, p , from 10% to 100%.

673

674

675 **Fig. S4.** Graphical representation of the sensitivity of the outputs to the 25% variation of the inputs. A larger
676 symbol corresponds with higher sensitivity and filled/empty circles correspond to negative/positive S . Outputs
677 are ordered according to the overall sensitivity (the most sensitive on the left) and inputs are ordered based on
678 the global influence (the most influential at the bottom).

679

680 **TABLES**681 **Table S1.** Heart parameters values.

	LV	RV	LA	RA
E_{max} [mmHg/mL]	2.8	0.45	0.13	0.09
E_{min} [mmHg/mL]	0.07	0.035	0.09	0.045
$V_{p=0}$ [mL]	20	30	3	7
τ_1 [s]	0.269 T	0.269 T	0.110 T	0.110 T
τ_2 [s]	0.452 T	0.452 T	0.180 T	0.180 T
m_1 [-]	1.32	1.32	1.99	1.99
m_2 [-]	21.9	21.9	11.2	11.2
t_{onset} [s]	0	0	0.85 T	0.85 T
R_{valve} [mmHg · s/mL]	0.01	0.01	0.005	0.005

682 T is the heart period.

683

684

685

686

687

688

689 **Table S2.** Mean sensitivity (S) of output signals to the input parameters. The inputs are ordered based on the global influence (the most influential on the left), the
 690 outputs are ordered based on the overall sensitivity (the most sensitive at the top).

Output signals	Input parameters															
	$E_{\max_{RA}}$	$E_{\max_{LA}}$	$E_{\max_{RV}}$	$E_{\min_{RA}}$	$V_{0_{LV}}$	$V_{0_{RV}}$	$V_{0_{LA}}$	$V_{0_{RA}}$	$E_{\min_{LA}}$	$E_{\max_{LV}}$	$E_{\min_{RV}}$	HR	C_{global}	$E_{\min_{LV}}$	SVR	PVR
P_{ao}	1.251	1.154	1.077	0.750	0.724	0.685	0.681	0.672	0.798	0.963	0.817	0.408	0.778	0.939	0.995	0.892
V_{la}	-0.615	-0.679	-0.517	-0.796	-0.813	-0.838	-0.809	-0.815	-0.758	-0.600	-0.280	-0.170	-0.448	-0.180	-0.234	-0.327
V_{ra}	-0.737	-0.458	-0.493	-0.795	-0.811	-0.835	-0.837	-0.762	-0.521	-0.360	-0.532	-0.113	-0.447	-0.850	-0.389	-0.366
V_{rv}	-0.535	-0.521	-0.536	-0.575	-0.588	-0.324	-0.326	-0.331	-0.632	-0.254	-0.656	-0.120	-0.297	-0.569	-0.308	-0.228
V_{lv}	-0.355	-0.410	-0.409	-0.564	-0.382	-0.404	-0.406	-0.411	-0.533	-0.475	-0.583	-0.068	-0.179	-0.512	0.016	-0.061
P_{ra}	-0.674	-0.494	-0.532	-0.079	-0.101	-0.133	-0.136	-0.144	-0.415	-0.384	-0.428	-0.117	-0.479	-0.801	-0.417	-0.390
P_{lv}	0.692	0.604	0.541	0.315	0.291	0.256	0.252	0.244	0.360	0.438	0.367	0.187	0.239	0.481	0.521	0.425
P_{pua}	0.240	0.156	0.169	0.313	0.289	0.254	0.251	0.242	0.368	0.067	0.256	0.079	0.080	0.378	-0.121	0.200
P_{la}	-0.545	-0.613	-0.532	-0.026	-0.048	-0.081	-0.084	-0.091	0.022	-0.618	-0.185	-0.174	-0.460	-0.079	-0.240	-0.336
P_{cve}	0.153	0.214	0.159	0.277	0.254	0.219	0.215	0.207	0.106	0.194	0.107	0.109	0.061	-0.053	0.190	0.161
P_{puve}	-0.505	-0.574	-0.497	-0.009	-0.031	-0.064	-0.067	-0.075	0.040	-0.584	-0.163	-0.161	-0.433	-0.056	-0.234	-0.309
Q_{pua}	0.266	0.180	0.116	-0.172	-0.192	-0.224	-0.227	-0.234	-0.121	0.016	-0.104	0.431	-0.135	0.011	0.045	-0.042
Q_{tv}	0.265	0.180	0.116	-0.171	-0.192	-0.224	-0.227	-0.234	-0.122	0.016	-0.105	0.430	-0.135	0.009	0.043	-0.043
Q_{ao}	0.267	0.180	0.117	-0.171	-0.192	-0.223	-0.226	-0.234	-0.120	0.017	-0.104	0.431	-0.134	0.011	0.045	-0.042
Q_{cve}	0.267	0.180	0.117	-0.171	-0.192	-0.223	-0.227	-0.234	-0.120	0.017	-0.103	0.431	-0.134	0.011	0.045	-0.042
Q_{mv}	0.266	0.180	0.116	-0.170	-0.191	-0.223	-0.226	-0.233	-0.120	0.016	-0.103	0.430	-0.135	0.011	0.044	-0.043
Q_{pv}	0.267	0.181	0.117	-0.171	-0.192	-0.223	-0.226	-0.234	-0.120	0.017	-0.103	0.431	-0.134	0.011	0.045	-0.042
Q_{sr}	0.266	0.180	0.117	-0.171	-0.192	-0.224	-0.227	-0.234	-0.120	0.016	-0.104	0.431	-0.134	0.011	0.045	-0.042
Q_{puve}	0.267	0.181	0.118	-0.170	-0.191	-0.223	-0.226	-0.233	-0.119	0.017	-0.103	0.431	-0.133	0.012	0.045	-0.041
P_{rv}	-0.024	-0.080	-0.092	0.065	0.042	0.009	0.006	-0.002	0.075	-0.159	0.011	-0.024	-0.195	-0.007	-0.268	-0.089

691 P_{ao} , aortic (arterial vessel) pressure, V_{la} , LA volume, V_{ra} , RA volume, V_{rv} , RV volume, V_{lv} , LV volume, P_{ra} , RA pressure, P_{lv} , LV pressure, P_{pua} , PuA pressure, P_{la} , LA pressure, P_{cve} , CVe pressure,
 692 P_{puve} , PuVe pressure, Q_{pua} , PuA flow, Q_{tv} , tricuspid valve flow, Q_{ao} , aortic valve flow, Q_{cve} , CVe flow, Q_{mv} , mitral valve flow, Q_{pv} , pulmonary valve flow, Q_{sr} , systemic vascular bed flow, Q_{puve} , PuVe
 693 flow, and P_{rv} , RV pressure.

