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Figure S1. The optimized geometries for the reaction intermediates on the Co(001) (a) and Mo/Co (b) during the HER process.
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Figure S2. The free energy of H* on the Co(001), Mo/Co and N-Mo/Co.
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Figure S3. (a) The configuration and the charge localization difference of Mo site on Mo/Co and N-Mo/Co. (b) The energy barrier of water dissociation on the Co(101), Mo/Co and N-Mo/Co. Initial state denote as I.S.. Transition state denote as T.S.. Final state denote as F.S.. (c) The relationship between Bader charge and energy barrier at the transition state. (d) The density of state of water adsorb on the Mo/Co and N-Mo/Co.
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[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Figure S4. The optimized geometries for the reaction intermediates on the Co(101) (a) and Mo/Co (b) during the HER process. 
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Figure S5. The free energy of H* on the Co(101), Mo/Co and N-Mo/Co. 
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Figure S6. SEM images of CoMoO4 (a) and N-CoMoO4 (b), Scale bars, 2 μm.
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Figure S7. XRD pattern of CoMoO4 and N-CoMoO4.
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Figure S8. Element mappings of Co, Mo, O and N in N-CoMoO4 with a magnification. Scale bar is 20 nm.
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Figure S9. XRD pattern of Mo-CoOOH.
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Figure S10. The cathodic currents of CoMoO4 and N-CoMoO4 at constant voltage of –0.5 V (RHE).
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Figure S11. SEM images of Mo/Co with different magnifications. (a) Scale bars, 5 μm and (b) Scale bars, 2 μm.
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Figure S12. SEM images of N-Mo/Co with different magnifications. (a) Scale bars, 5 μm and (b) Scale bars, 2 μm.
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Figure S13. The EDS elemental line scan profiles along the black line shown in the HAADF image of N-Mo/Co.
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Figure S14. EELS of N-Mo/Co.
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Figure S15. The Co K-edge XANES (a) and EXAFS (b) spectra of Co on Mo/Co and N-Mo/Co, respectively.


[image: S17]
Figure S16. N K-edge of XAS spectra of N on the Co/Mo and N-Mo/Co.
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Figure S17. Valence-band spectra of Co, Co/Mo and N-Mo/Co.
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Figure S18. Cyclic voltamogram curves of Co (a), Mo/Co (b), and N-Mo/Co (c) in the double layer capactive region at the scan rates of from 20 mV to 100 mV s-1. (d) ECSA of Co, Mo/Co, and N-Mo/Co.
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Figure S19. EIS of Co, Co/Mo and N-Mo/Co.


[image: S21]
[bookmark: OLE_LINK14][bookmark: OLE_LINK13]Figure S20. The temperature dependent HER activity of N-Mo/Co.
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Figure S21. (a) LSV of N-Mo/Co for OER in 1 mol KOH. (b) Chronoamperometry curves obtained with the N-Mo/Co at constant voltage 1.50 V. 


Table 1. Summary ICP-AES parameters of metallic elements of samples. 
	Samples
	Elements
	Atomic percentage (%)

	CoMoO4
	Co
	50.37

	
	Mo
	49.63

	N-CoMoO4
	Co
	50.48

	
	Mo
	49.52

	Mo/Co
	Co
	97.83

	
	Mo
	2.17

	N-Mo/Co
	Co
	97.89

	
	Mo
	2.11





Table 2. Comparison of HER performance on different catalysts.
	Catalyst
	Media
	Electrode 
	Overpotential at -10 mA cm-2 (mV)
	Tafel slope (mV dec-1)
	Ref.

	N-Mo/Co
	1 M KOH
	CC
	12
	31
	This work

	CoNOCs
	0.5 M H2SO4
	CC
	93
	49
	1

	Co/Co3O4
	1 M KOH
	NF 
	90 
	44 
	2

	S-CoO NRs
	1 M KOH
	CFP
	73
	82
	3

	Co3Mo@MoOx
	1 M KOH
	NF
	68
	61
	4

	Co0.6Mo1.4N2
	0.1 M HClO4
	GC 
	200
	 /
	5

	Ni0.2Mo0.8N
	1 M KOH
	CC
	109
	95
	6

	Ni(OH)2/MoS2
	1 M KOH
	CC
	80
	60
	7

	Ni-MoS2
	1 M KOH
	CC
	98
	60
	8

	Co3FeNx
	1 M KOH
	NF
	23
	94
	9

	FeNi3N
	1 M KOH
	NF
	75
	98
	10

	V-Co4N
	1 M KOH
	NF
	37
	41
	11
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