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S1: Schematic of in-vacuo annealing. a) Microscope image of a sample consisting of bottom hBN (b-hBN), MoS2 , and top hBN (t-hBN) on SiO2. A and B represent the resulting fully, and half-encapsulated MoS2 heterostructure, respectively. b) Schematic measurement setup showing a modified optical cryostat with integrated heater enabling in-vacuo high-temperature annealing (up to Tannealing  900 K) and successive low-temperature PL measurements (Tsample  20 K). c) Temperature profile of the entire PL study. The red-shaded areas highlight the temperature profile during the annealing processes. Upon reaching the desired annealing temperature, the latter was maintained constant for 30 minutes. The blue-shaded areas represent the low-temperature PL measurements. 
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S2: Annealing temperature dependent evolution of low-temperature PL spectra. a) PL spectra of fully encapsulated pristine MoS2, and after annealing to 420 K, 450 K, 510 K, 600 K, 700 K, 800 K, 900 K, and again 900 K. Pristine MoS2 exhibits a broad emission peak, which is strongly reduced after mild annealing. A single emission peak appears and its intensity increases with rising annealing temperature. The intensity of the single emission peak decreases after annealing to 900 K and the PL disappears after a subsequent annealing step to 900 K (gray). b) PL spectra of pristine MoS2 on h-BN, and after annealing to 420 K, 450 K, 510 K, 600 K, 700 K, and 800 K. A similar behavior to fully encapsulated MoS2 occurs. However, lower annealing temperatures of about 700 K already reduce the intensity of single emission line before it vanishes at 800 K.
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S3: Laser power dependent PL of fully encapsulated MoS2 after annealing to 800 K. a) Power dependent PL spectra. Curves are offset for clarity. b) Power dependent integrated intensity of the neutral exciton (XA) (red) and the single emission line XL (blue). We do not observe a laser power dependent saturation for the emission of the exciton. However, the defect emission line exhibits a saturating behavior, which we can be fitted by . The turnover for saturation where P = Psat occurs at approximately 50 µW.
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S4: STM overview image of single layer MoS2 on graphene/SiC after mild annealing. Within our experimental statistics, the only observed defects are oxygen passivated sulfur top and bottom vacancies. The bright spots correspond to adsorbed molecules on the MoS2 surface. 
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S5: Low-temperature PL spectrum of homogeneously He-ion irradiated single-layer MoS2 on graphene/SiC. The He-ion dose was 5·1014 cm-2. The defect emission is absent due to quenching from the underlying graphene substrate.

S6: Details of DFT calculations for defect orbitals in MoS2 with sulfur vacancies
[bookmark: _Hlk54097381]DFT calculations were performed using the Vienna Ab initio Simulation Package, Vasp 5.4.41,2, using the projector augmented wave method and treating the semi-core d-states as part of the valence shell in the PBE variant of the generalized gradient approximation3. For defect calculations, 9x9 supercells, consisting of 243 atoms were used with the experimental lattice constant, applying the G-point approximation. The defect geometries were fully relaxed. A 450eV (900eV) cutoff was applied for the expansion of the wave functions (charge density). 

[bookmark: _Hlk54097511]S7: Details of GW-BSE calculations for absorbance spectra of MoS2 with sulfur vacancies
We first performed density functional theory (DFT) calculations within the local density approximation (LDA) using the Quantum-ESPRESSO code4. The calculations were done on a 5×5 supercell arrangement of a MoS2 monolayer with one S vacancy, following prior work5. We used a plane-wave basis and norm-conserving pseudopotentials with a 125 Ry plane-wave cutoff. We included the Mo semi-core 4d, 4p, 4s, 5s and 5p states as valence states in our pseudopotential. The distance between repeated supercells in the out-of-plane direction was 15 Å. We relaxed the geometry within DFT and used DFT charge density as a starting point for our GW and Bethe Salpeter equation (GW-BSE) calculations. Our GW calculations are performed with the BerkeleyGW code6 using the generalized plasmon-pole model7, an energy cutoff of 25 Ry for the planewave components of the dielectric matrix, and a nonuniform k-point sampling corresponding to a 30×30 uniform k-grid. We included 4,000 unoccupied states in the sum over empty states in the self-energy and polarizability and tested the convergence with respect to unoccupied states by comparing to a calculation using up to 20,000 effective states obtained by averaging high-energy states within a small energy window. We find that these parameters converge the relative quasiparticle energies for the defect and pristine states at the K point to within 100 meV. The BSE was also solved with the BerkeleyGW code6,8. We diagonalize the BSE Hamiltonian within the Tamm-Dancoff approximation with 10 valence and 10 conduction bands. The clustered sampling interpolation (CSI) scheme9 was used to interpolate a nonuniform k point sampling to a uniform k-grid of 18×18×1 k points. A 5 Ry cutoff was used for the planewave components of the dielectric matrix used in the BSE. Spin orbit coupling was added as a perturbation. We find that these parameters converge the calculated exciton excitation energies up to 200 meV.
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