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Supplementary Information

1 Blister relaxation model

We consider the elastic relaxation of a fluid-filled blister (cavity) beneath an infinite elastic medium and
above a porous substrate. During the relaxation the fluid in the blister leaks into the porous substrate below
and ahead of the blister. The radius of the blister R remains unchanged (experimental observation) and the
total volume Vi, of fluid in both the blister V(¢) and the porous layer is fixed.

1.1 Mass balance

The radial and vertical velocities in the blister are denoted u and w, respectively. The continuity equation
for incompressible flow V - u = 0 in cylindrical coordinates, assuming axisymmetry, is

10 ow
~ o - =0. 1
ror (ru) 0z 0 (S.1)
Integrating the equation vertically from the bottom z = 0 to the top z = h(r,t) of the blister
h
10
/0 ;E(Tu)dz + w‘z:h - w|z:0 = 0 (82)
Using Leibniz’s rule, equation (S.2) becomes
1o (" oh
ror ), rwde =l God wlo = wlanp =0 (S.3)

At z = h(r,t), D/Dt(z — h(r,t)) = 0 where D/Dt = 9/0t + u - V is the material derivative. Thus —0h/0t —
uOh/Or +w =0 at z = h(r,t) and equation (S.3) becomes

10

h
oh
;ET/O udz + T w|,_o = 0. (S.4)

Define the average velocity in the blister as & = h™* foh udz so that equation (S.4) becomes
10
ror

which governs mass conservation in the blister.

In the porous substrate of constant thickness hy and porosity ¢, the layer thickness is constant dhg /0t = 0.

The flow velocity in the porous layer can be describe by Darcy’s law with velocity u,(r,t). Following the

same steps as equations (S.1-S.5) and substituting wp for the vertical velocity at the interface between the
blister and porous layer, we obtain

10

(rah) + on _ wo =0, (blister), (S.5)

ot

fa—(rgzﬁupho) +wp =0, when r <R (porous layer). (S.6)
ror
Equations (S.5) and (S.6) give
oh 10 10
- i - = h . .
o + o (ruh) + o (r¢upho) =0, when r<R (S.7)

The height change of the blister is balanced by the radial gradient of fluid flux not only in the blister but
also the porous layer. Assuming axisymmetry, it is convenient to integrate the blister mass conservation

equation (S.5) radially
/Ra(h)d /R ahd _/R dr—0 (S.8)
or rah)dr + ; i ; rwodr = .

Since the volume of the blister is V(t) = 27 fOR rhdr, and no fluid is injected during relaxation so that
ruhl, = 0, the above equation gives the global mass conservation law for the blister

dv

dt
where the first term is the rate of blister volume reduction and the second term is the total flux of liquid
leaking from the blister into the porous substrate ahead of the blister. Similarly, integrating the mass balance
equation (8.6) in the porous layer radially and applying ru,ho|, = 0 (no fluid is injected during relaxation),
we obtain

R
/ 2mrwodr = 0, (S.9)
0

R
rouyhol 5 + / rwodr = 0. (S.10)
0

Ahead of the blister (r > R), wo = 0 since there is no vertical fluid flux. Thus d(réu,he)/0r = 0, i.e.,
the horizontal flux r¢u,hg is constant along . Thus

rouphg|, = Rouyhol g, - (S5.11)

Combining equations (S.9, S.10, S.11), we obtain the global mass conservation in the porous layer for

r>R
dv

pr —2nréuphg, when r >R (porous layer). (S.12)
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1.2 Force Balance

During the formation of the water-filled blister at the ice-bed interface, the deformation of ice imposes elastic
stresses on the blister. As water in the blister leaks into the porous substrate, the elastic stresses relax.
While the elastic stresses act as a driving force for the blister relaxation, the viscous stresses in the fluid flow
(along the r direction) resist the relaxation. We now give an approximate description of the time-dependent
relaxation. The pressure source in the system, i.e. the elastic driving stresses P(¢), is reduced along the
the flow due to the radial pressure gradient dp/dr < 0 that drives the viscous flow in the porous substrate,
and eventually reaches the background pressure. The background pressure (the overburden pressure of ice)
is assumed constant with space and time around the blister, thus does not affect the relaxation dynamics
(see Supplementary Information Section 2). Assuming the viscous resistance in the blister is negligibly small
compared with the viscous resistance in the porous layer (see Supplementary Information Section 1.5), the
time-dependent dynamics can be thus modeled as

Ry ()
P(t) + / %T’t)dr —0, (S.13)
R T

where R, (t) is the position of the advancing front of the liquid in the porous substrate. For convenience,
we introduce a characteristic height scale H(¢) = h(r = 0,t) and use the fixed blister radius R as the radial
length scale so that

r=Rs, and h(r,t)=H()Q(s), (S.14)

where s and €(s) are dimensionless. Note that here we assume the dimensionless cavity shape Q(s) is
independent of time, i.e., the relaxation dynamics is self-similar [4]. The total volume of the blister can be
written as

R 1
V(t) = 27r/ rh(r,t)dr = 2rH(t)R*a, where o= / sQ(s)ds (5.15)
0 0

is a time-independent dimensionless parameter. The exact elastic stress distribution p(r,t) around the blister
is a function of the shape of the cavity h(r,t) (equation (2.1) in [7]). To compare the model with experimental
and field data, we will derive the solution for the blister volume V(¢) as a function of time.

For small elastic strains, H/R < 1, the elastic stresses, analogous to Hooke’s law, scale linearly with the
vertical displacement P(t) o< H(t). Here, using equation (2.1) in [7] and (S.15), we approximate the elastic
stress with the time-dependent pressure

E H(t) E V(t)

P#) = 20—12) R 2(1-12%) 2anR3’ (5-16)

1.2.1 Porous substrate

Fluid flow through a porous medium obeys Darcy’s law, where the (radial) fluid flux ¢ (volume per unit
time per unit area crossing the flow) is linearly proportional to the pressure gradient dp/dr. In glaciology
the same approach was used by Weertman to describe the water flow through a porous rock with a uniform
permeable layer thickness below the ice sheet [9]. Note that the fluid flux ¢ is related to the fluid velocity wu,
in a porous medium with porosity ¢ (volume of pores normalized by total volume) via ¢ = ¢u,, since fluid
flux is only contributed by the flow in the pores. For a fluid with viscosity u and permeability k, Darcy’s
law gives

Ip 1% po
i U P s Y 1 1
a 14 2 U (porous layer) (5.17)
Integrating equation (S.17) and using equation (S.12), we obtain
Rp(t) 0 Ry _
D Uy, uwodv R,
—dr = dr = —1 — ]. 1
/R ar " /R kT onhok dt R (8-18)

Since the total water volume V;,; is a combination of water in the blister and the porous substrate, Vi, =

V (1) + ¢7 hoRp(t) . Thus
R (t) [ Ltot V (t) S.19
P = h 5 - ( . )

Equations (S.18) and (S.19) give the pressure drop along the flow in the porous layer as a function of V'(¥)

/Rp@ap _ dvln(vmt—vu)

_ av f 2
o or T dmhok dt drho R2 ) or r>1R (8.20)

Finally, substituting equations (S.16) and (S.20) into (S.13), we obtain a first-order ordinary differential
equation that governs the time evolution of the blister volume V' (),

E 1% 1 Vier — V' dV
i) $.21
21— 12) 2ar % | Aok " <¢wh032 ) a (8:21)

with an initial blister volume V(¢ = 0) = V;. The second term in the above equation result from the viscous
dissipation in the porous substrate, respectively. The first term represents the driving force of the system,
the elastic stresses.
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Supplementary Figure 1: Model solutions. The dimensionless blister volume V as a function of dimen-
sionless time 7, defined in equation (S.22). The analytical exponential solutions (equation (S.27), red dashed
curves) approximate the numerical solutions (black solid curves) of the full non-linear ODE (equation (S.23))
for a range of B, C (defined in equation (S.24)) and the corresponding f (defined in equation (S.26)).

1.3 Non-dimensionalization

For convenience, we define the dimensionless volume and time as

%4 Ekh
V=— with 7=¢ 0

———= .22
‘/;_ ,LL(]. _ I/2)R3 ’ (S )
so that equation (S.21) can be non-dimensionalized
B—-V\ dv
Inl—— ) —= I.C. =1 2
V+an< G >d7’ 0, LC. V(0) , (5.23)
2

where B = Vt(" and C= dm}‘L;R . (5.24)

Although V (t) depends on nine parameters E, v, u, R, ho, k, ¢, Vi, Vior (equation (S.21)), we found that the
behaviour of the dimensionless volume V as a function of dimensionless time 7 depends on two dimensionless
parameters B and C. B is the ratio between total water volume injected into the system and initial blister
volume and C' is the ratio between water volume just beneath the blister and the initial blister volume.
Based on field data B = 1.14 (based on the initial blister volume Vj and lake volume V;,; estimated for the
2012 North lake drainage event [8]), and C' = 0.04 — 0.11 (Supplementary Table 3). The numerical solutions
to equation (S.23) for a range of B, C are plotted in Supplementary Fig. 1 as black curves.

1.4 Analytical solution

B

Since In (%) varies slowly with V), it can be approximated with a time-independent constant In (%),

where v is a numerical constant to be determined below. Equation (S.23) can be approximated with a linear
ODE

v+ f% =0, with V(0)=1, (S.25)

where f = aln (BC—”y> (S.26)

and yields an exponential solution for V
V = exp (—;) . (5.27)

To find the value of 7 so that equation (S.25) approaches (S.23), we choose 7 to be V averaged over a time
scale of f,ie.,vy=f"1! fof Vdr = fof exp(—7/f)dr = (e—1)/e ~ 0.63. Supplementary Fig. 1 shows that the
exponential solution (red dashed curve, equation (S.27)) is a good approximation to the numerical solution
(black solid lines) to the non-linear ODE (equation (S.23)).

To compare with the field data, we also obtain a solution for the blister height h(r,t). The height of
the blister at any location directly relates to the dimensionless volume. Since the blister radius remains
unchanged during relaxation, the volume change results from a change in height. The blister height A(r,t)
relates to its initial value h(r,¢ = 0) via the formula

VT hetd_ 2mal0R b (5.%)
Vi or [Fh(ri=Oydr 270/ (RZA(nt=0)  h(r,t=0) :

where o/ (r) = aH(t)/h(r,t) is related to the self-similar shape of the blister and so is independent of time
and space. Therefore the height of the blister, measured at a given location, rescaled by its initial value H,

also has an exponential response
H =exp (—;) , (S5.29)
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which is directly compared with field data in Fig. 3 in the main text. The numerical pre-factor f can
be calculated for each field data set using B, C, and a =~ 0.32 (found experimentally from fitting the
experimental data to equation (S.27)). We estimate that for the nine observational data sets presented in
Fig. 3 in the main text f ~ 0.5 — 0.8 = O(1) (Supplementary Table 3), which is remarkably close to the
experimental value f = 0.6 — 0.7. The effect of such range of f on the solution (equation (S.27)) is shown in
Supplementary Fig. 1.

All relevant parameters used in this paper (dimensionless and dimensional) for both the experimental
system and field observations are listed in Supplementary Table 3.

1.5 Viscous dissipation in the blister

In this section we show the negligible viscous dissipation in the blister compared with that in the porous
sheet. Below We calculate the viscous pressure drop along the flow in the blister Ap,, = fOR Op/drdr and
compare it with the viscous pressure drop in the porous sheet Ap,, = [ 11: ? 9p/Ordr (equation (S.20)).

In the limit where viscous effects are important relative to inertial effects, i.e. a representative Reynolds
number Re.q = puH?/(uR) < 1, the flow in the blister is laminar. We solved the Stokes equation dp/dr =
pud?*u/dz? (neglecting the r-derivatives terms since z < r) with boundary conditions u(z = h) = 0 and
u(z = 0) = ¢u,, and obtain a variant of Darcy’s law,

L
2h?

o _ o
or h2S,

1
where Sy = (12 + ) ,  (Dblister) (5.30)

where Sy is a slip factor that couples the effect of non-zero velocity at the interface between the blister and
porous layer. Equations (S.7), (S.17), and (S.30) give

— = (:(h35’4 + hdﬂ)?‘ﬁ) =0, when r<R (8.31)

Rearranging equation (S.31), we obtain
op & for Oh gy
or S, + hok
The integrated pressure drop along the flow in the blister, considering the velocity slipping against the porous
layer, is thus

(S.32)

R op R Ly Sy
—dr = f .
T /0 W12 4 ko f g for TR (5-33)
To rewrite the pressure drop in terms of V' (t), we substitute equations (S.14) and (S.15) into (S.33) to find
R 2 1 g1 )s'ds’ 202 R% d
/ 0y - wBAH i ) © 25 A 0‘3"R P (S.34)
o Or H3 dt Jo Qs)3/12+Q(s )k/(ZH ) + hok/H Vv
s7L [0 Q(s)s'ds’
h = 0 .
where 5 /0 Q(s)3/12 + Q(s )k/(2H2) T hok 5% (8-35)

is a dimensionless parameter. Although H(t) is time-dependent, the typical transmissivity kho ~ O(1) —

0O(10%) mm? (Fig. 3 in the main text), porous layer thickness hg ~ 0.1 m, and blister height H ~ 1 m give

k/H? < 1, hok/H? < 1. Thus 3 can be approximated as 3 ~ f st, which is independent of

time.
Combining equations (S.20) and (S.34), the viscous dissipation in the blister compared with that in the
porous sheet can be quantified by a dimensionless parameter

Apw [ Op/Ordr 167 RSkhg

A= = ~
Apup fg” Op/Ordr VP

Based on field data A = 0.01 — 0.19 (Supplementary Table 3), thus the viscous resistance in the blister is
negligible compared to that in the porous sheet. The dominant viscous resistance in the porous sheet (A < 1)
yields a simple balance between the V and dV/dr terms in equation (S.25), resulting in an exponential
solution (equation (S.27)). In our experiments, we design the parameters so that A ~ 0.001 — 0.002 < 1
(Supplementary Table 3) and we find that the experiments agree with the exponential solution (Fig. 2d in
the main text).

1.6 Pre-filled porous substrate

If water fully fills the subglacial drainage system prior to the blister relaxation, the water in the blister
could enter the water-filled porous sheet by deforming the pores (Section 4.5 in Hewitt et al. (2018) [2]).
Alternatively, if we assume that the water pressure in the drainage system at a radial distance R, away from
the blister center is unperturbed by the formation and relaxation of blister and within r < Ry the drainage

system is fully filled with water, the blister height still obeys H = exp(—?) (equation (S.29)) where the

numerical pre-factor is defined as f = aln(Ry/R)%. In reality Ry could be determined by the location of
partially empty channels and sheets [3] where the subglacial drainage system is “under-pressured” [3] due to
the exposure of subglacial water pressure to atmospheric pressure; this is similar to the empty part of the
porous substrate in our experiments. Note that when Ry changes from 10 to 50 km f only increases from
1 to 2, which is of the same order of magnitude as the value calculated for the model with a partially filled
porous sheet (f = 0.5 — 0.8 (Supplementary Table 3)). Thus the inferred transmissivity khq for a pre-filled
drainage system is of the same order of magnitude as that for a partially filled porous sheet.
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Supplementary Figure 2: A blister on a inclined bed. (a) Schematic of a blister of radius R and
characteristic height H under an ice sheet of thickness d on a bed with spatially varying bed elevation b and
characteristic slope 8. The characteristic thickness of the drainage system is hy. Dashed lines denote the ice
surface and bottom after the ice-sheet relaxation. (b) The bed topography near the North Lake inferred by
Morlighem et al. (2014) [6]. The triangles, black curve, and red contour are the GPS stations, a vertical
hydrofracture through which the lake drains, and the 2011 Lake contour, respectively. The largest bed slope,
0 ~ 0.04, aligns with the white arrow.

2 Effects of bed slope, ice overburden, and hydrostatic pressure
on blister relaxation

The blister model in this paper assumes that (1) bed slope, (2) ice overburden pressure, and (3) hydrostatic
pressure of water in the blister have negligible effects on the ice-sheet relaxation dynamics. In this section
we estimate these effects. On an inclined bed with elevation b, the water flux q in the subglacial water sheet
as a function of the hydraulic potential ¢ is

k
q=——Vo¢. (S.37)
I
The hydraulic potential involves a bed elevation-related contribution p,,gb and the water pressure p in the
water sheet
¢ =pwgb+p and p=pigd+ pugh+ Ape, (S.38)

where p; and p,, are the density of ice and water, respectively, d is the ice-sheet thickness, h is the blister
height, and Ap, is the the third term in the water pressure that balances the elastic stresses of the deformed
ice sheet due to the blister. The horizontal hydraulic potential gradient in equation (S.37) can be written as

Vo = pugVb+ pigVd + pu,gVh + V(Ap,) (S.39)

Below we estimate the magnitude of each term in equation (S.39) and find that the elastic-stress term
dominates. For a blister (height H ~ 1 m and radius R ~ 2 km) under an ice sheet (Young’s modulus E ~ 10
GPa), the gradient of elastic stresses is V(Ap.) ~ EH/R? ~ 2500 Pa/m. The bed slope beneath and around
the blister is roughly 6 ~ 0.04. The bed-elevation related term in equation (S.39) is p,gVb = p, g6 ~ 400
Pa/m <« V(Ap,), which is small compared with the elastic term.

In addition, the ice overburden pressure is negligible due to the small variation of ice-sheet thickness d
over the blister length scale p;gVd < V(Ap.). The contribution of the hydrostatic pressure due to the water
height in the blister is p,gVh ~ p,gH/R ~ 5 Pa/m <« V(Ap.), and also is also negligibly small. Thus
(1) bed elevation, along with (2) overburden pressure of ice, and (3) the hydrostatic pressure in the blister
contribute little to the hydraulic potential gradient (equation (S.39)) when a blister is considered, and have
small effects on the water flux ¢ compared with the blister-induced elastic stress. For simplicity we neglect
these effects in the blister relaxation model (Supplementary Information Section 1). Note that the bed slope
needs to be as large as § > EH/(R?p,,g) ~ 0.25 to have a non-negligible effect on blister relaxation.

Therefore in this paper the water flux in the water sheet is approximately q = —k/uVp, where the water
pressure in the blister is of the same order of magnitude as the elastic stress p = O(EH/R), which is the
dominant driving stress for the water flow. Note that when the elastic stress has mostly relaxed and the
blister thickness is much less than H < p,g0R?/E ~ 16 cm, the bed topography becomes the dominant
mechanism to drive the subglacial flow.

3 Viscous effects of ice

The blister model assumes that ice is elastic. In this section we estimate the effect of viscous flow in ice
sheets on the relaxation of a blister. We consider an extreme case where ice is purely viscous and estimate
the surface elevation change h,;s. compared with that resulting from a pure elastic ice hejgst-
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Supplementary Figure 3: Blister under a purely viscous ice sheet. (a) A water-filled blister. The
dashed lines mark the relaxed positions of the top and bottom of the ice sheet. (b) The decrease of surface
elevation between the beginning of blister relaxation (dashed line, same as the solid line in (a)) and a certain
time At afterwards (solid line) is a combination of the thinning of blister height Ah,;s. and the thinning of
ice sheet thickness Ad by ice flowing (gray arrows) with varying velocity U(z).

3.1 Viscous ice sheet

When a viscous ice layer is on top of a water-filled blister, the lowering of the vertical surface elevation could
result from the (1) thinning of ice-sheet thickness Ad and the (2) thinning of the blister thickness Ahy;s.
(Supplementary Fig. 3). Below we estimate both contributions.

3.1.1 Ice-sheet thinning

When a viscous layer of ice is on top of a water-filled blister, the cross-sectional velocity is uniform U
(Supplementary Fig. 3b) due to the free-slip top and bottom boundary conditions. Due to mass conservation
the thinning of ice-sheet thickness depends on the horizontal gradient of vertical flux dd/dt+ 9/9z(Ud) = 0.
Note that where ice sits on top of the drainage water sheet the shear stress at the ice-bed interface can be
nonzero depending on the characteristics of the ice-bed contact. Here we only consider a case with zero
shear stress at the bed, which overestimates the ice thinning Ad. The inclined ice-water interface z = h and
non-uniform ice thickness d contribute to the hydraulic potential gradient V(p;gh + p;gd) driving the ice
flow. Note that initially Vd ~ Vh so the total hydraulic potential gradient is on the same order of magnitude
as p;gVh. Resistance in the ice flow comes from the horizontal gradient of the deviatoric stress 7,,, where
x is the along-flow direction. The balance of the driving and resisting mechanism gives 7., /R =~ p;gH/R.
The rheology of ice is given by Glen’s flow law [1] 7o &~ Beg,'/™ ~ B(U/R)Y"™ where n ~ 3 and B is
temperature-dependent. Thus U = (p;gH/B)"d. Along with mass conservation, we obtain the rate of ice

thinning scales as
Ad _Ud _ <pigH)"d

PP S.40
At R B ( )
We find that for a typical range of the viscosity factor B ~ 2.7 x 10> ~ 10° Pa-year!/? (at ice temperature
T =-30~—5°C) 5], H~1m and d =~ 1 km, so that after At = 10 days the ice only thins Ad ~ 0.02 — 1

min.

3.1.2 Blister thinning

The driving force that causes the thinning of the blister Ah,;s. (Supplementary Fig. 3b) is the gradient of
hydrostatic pressure in the blister p,,gVh, because there are now no elastic stresses in the ice sheet. The
resisting mechanism for relaxation of the surface elevation is thus the viscous dissipation of water flux ¢ in the
water sheet of thickness hg and effective permeability k. A balance between the driving hydrostatic pressure
and resisting viscous dissipation along the water flux is p,gH ~ pgR/k. The rate of blister volume reduction
supplies the water flux in the water sheet, i.e., AV/At ~ qhgR. Here we drop the O(1) pre-factors (e.g. 7).
The decrease in vertical blister height scales with a decrease in volume as Ahy;scR? = AV. Therefore the
rate of blister thinning under a viscous ice sheet scales as

Ahm’sc ngHkhO
— = . S.41
At R2u ( )
We find that for water viscosity x4 =~ 1 mPa-s, sheet transmissivity khg ~ 1 mm?, and the typical values of
H, R used above, after At = 10 days the blister thins Ah,;s. ~ 2 mm.

3.2 Elastic ice sheet

On the other hand, in the original blister model ice is considered elastic and the relaxation driving force is the
elastic stress cause by the ice-sheet deformation. The driving elastic stress and resisting viscous dissipation
along the water flux give EH/R = ugR/k. In the same way as for viscous ice, the volume conservation of
water gives AV/At ~ qghoR and Ahgast R2 =~ AV. The rate of decrease in blister height due to the elastic

relaxation of ice sheet is thus
Ahelast ~ EHkhO

At T R3p

(S.42)



841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

3.3 Comparison

Comparing equations (S.40), (S.41), and (S.42), we find that within a given time period At and the typical
parameter values of E, R, H, khy, d, u, B used above, the vertical blister height change under a purely elastic
ice sheet is much larger than the vertical surface elevation change under a purely viscous ice sheet.

Aheltmt ~ E ~ 103’

Aheos: _ EHkho [ B
Ahvisc - ngR -

Ad S pAgH) ~10% - 10°. (S.43)

Thus, the reduction of blister height is dominantly contributed by the elastic relaxation of ice rather than
the viscous ice flow.
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Supplementary Figure 4: GPS uplift data processing. The relative vertical displacement
data from individual GPS stations for 5 drainage events (a-e) and the detrended data (f-j). The
background variation of vertical displacement in time t due to ice-sheet movement is linearly
fitto y = at + b (black lines) before and after the uplift peak. The background linear trend is
then subtracted from the GPS data to yield the detrended vertical displacements (f-j). Details
of the time range used for linear curve fitting are in Methods. The relaxation time t,..; (vertical

axis in Fig. 3a) is obtained by fitting an exponential curve to the detrended vertical
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displacements h(t). The 9 detrended vertical displacements are used in Fig. 3b-c.

a. South Lake on 15 July 2009

T y = :
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Supplementary Figure 5: South Lake in 2009. (a) Landsat 7 image of South Lake on July
15, 2009, five days before rapid drainage. Red line marks lake margin. SLSS GPS station
shown with black triangle. (b) 30-m resolution MEaSURESs Greenland Ice Mapping Project
(GIMP) Digital Elevation Model (DEM) from GeoEye and WorldView Imagery, Version 1
(36, 37) for South Lake region. Solid Black contour shows 1050.5 m a.s.l., with dashed
contours showing 1050.5+1¢ = 1050.5+1.27 m a.s.l. (c) Lake depth relative to 1050.5 m a.s.l.

lake shoreline.
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Supplementary Figure 6: Vertical and along-flow displacement during North and South
Lake drainages. For all panels, station (red) vertical displacement and (blue) along-flow
displacement for an individual GPS station are shown. Dashed black line shows a linear fit to
pre-drainage along-flow displacement, with along-flow velocity (slope) noted in the text on
panel. Grey vertical bars indicate time of drainage and time of along-flow displacement
attaining the value predicted by pre-drainage along-flow velocities, with the duration between
these time points in days noted in the text on panel. North Lake drainages for (a) 2006, (c)
2011, and (d) 2012 are shown. South Lake drainage for (b) 2009 is shown. The relationship
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between vertical displacement and along-flow velocity around a moulin has been reported in
(39).
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Supplementary Figure 7: Comparison of different models for blister height. (a) Our model
predicts an exponential decrease of blister height with time (equation (7)). The exponential decay
of blister height h(t) = h;exp(—t/t,.;) fitted to all GPS data as a function of time is shown by the
solid black curves. The fitted ¢, is used to calculate the hydraulic transmissivity (Fig. 3a). The
color of each set of uplift data is the same as in Fig. 3. (b) Comparison of the GPS data with a

power-law (black line) with exponent -2/11 (14).
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Lake name | Lake GPS location | Lake drainage date

North Lake 68.72° N, 49.50° W [ July 29, 2006

June 18, 2011

June 9, 2012

South Lake | 68.57° N, 49.37°W | July 20, 2009

Lake F 67.01° N, 48.74° W | June 30, 2010
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Supplementary Table 1: Locations and dates of the lake drainage events.
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Station Year Vioe (kM) Ry (M) R (km) khy, (mmd)
NLBS 2006 +0.010 +0.16 +0.4 +91.4
SLSS 2009 +0.010 +0.13 +0.5 +55.8

NE 2010 +0.027 +0.09 +0.2 t+14.4

NW 2010 +0.027 +0.09 +0.2 +15.0
NLO09 2011 +0.001 N/A +0.1 +0.5

NLO8 2011 +0.001 N/A +0.1 +0.3

NLO09 2012 +0.001 N/A +0.1 +2.4

NLO8 2012 +0.001 N/A +0.1 +2.2

NLO7 2012 +0.001 N/A +0.1 +1.38

Supplementary Table 2: Parameter uncertainties. Error bars for parameters listed in Fig. 3:
lake volume V;,;, maximum initial blister height h,,,,,, blister radius R, and transmissivity
khy. The lake volume error bars for the 2009 drainage event are estimated in Methods and for
other years are taken from literature (2, 4, 6). The errors associated with h,,., R, kh, are

propagated from the lake volume error, as detailed in Methods.
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Supplementary Table 3: Parameters and their definitions used in this study. Although the

dimensional governing equation (equation (S.21)) depends on nine dimensional parameters

(¢, ho, k, E, v, 1, Vior, Vi, R), its dimensionless form (equation (29)) only depends on two

dimensionless parameters (B, C). We designed the experimental parameters so that the



899

dimensionless parameters (B, C) of the experiments match that of the field data, meaning
experiments fall into the same physical regimes as the field observations. Derivations of the
governing equation and the non-dimensionalization are detailed in Supporting Information.
Numerical factor @ = 0.32 was found empirically by fitting all experimental data to equation
(2). When calculating C we assumed the thickness of the water sheet h, is on the order of 0.1
meters (11).
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