

Supplementary Information

1 Blister relaxation model

We consider the elastic relaxation of a fluid-filled blister (cavity) beneath an infinite elastic medium and above a porous substrate. During the relaxation the fluid in the blister leaks into the porous substrate below and ahead of the blister. The radius of the blister R remains unchanged (experimental observation) and the total volume V_{tot} of fluid in both the blister $V(t)$ and the porous layer is fixed.

1.1 Mass balance

The radial and vertical velocities in the blister are denoted u and w , respectively. The continuity equation for incompressible flow $\nabla \cdot \mathbf{u} = 0$ in cylindrical coordinates, assuming axisymmetry, is

$$\frac{1}{r} \frac{\partial}{\partial r} (ru) + \frac{\partial w}{\partial z} = 0. \quad (\text{S.1})$$

Integrating the equation vertically from the bottom $z = 0$ to the top $z = h(r, t)$ of the blister

$$\int_0^h \frac{1}{r} \frac{\partial}{\partial r} (ru) dz + w|_{z=h} - w|_{z=0} = 0. \quad (\text{S.2})$$

Using Leibniz's rule, equation (S.2) becomes

$$\frac{1}{r} \frac{\partial}{\partial r} \int_0^h (ru) dz - u|_{z=h} \frac{\partial h}{\partial r} + w|_{z=h} - w|_{z=0} = 0. \quad (\text{S.3})$$

At $z = h(r, t)$, $D/Dt(z - h(r, t)) = 0$ where $D/Dt \equiv \partial/\partial t + \mathbf{u} \cdot \nabla$ is the material derivative. Thus $-\partial h/\partial t - u\partial h/\partial r + w = 0$ at $z = h(r, t)$ and equation (S.3) becomes

$$\frac{1}{r} \frac{\partial}{\partial r} r \int_0^h u dz + \frac{\partial h}{\partial t} - w|_{z=0} = 0. \quad (\text{S.4})$$

Define the average velocity in the blister as $\bar{u} \equiv h^{-1} \int_0^h u dz$ so that equation (S.4) becomes

$$\frac{1}{r} \frac{\partial}{\partial r} (r\bar{u}h) + \frac{\partial h}{\partial t} - w_0 = 0, \quad (\text{blister}), \quad (\text{S.5})$$

which governs mass conservation in the blister.

In the porous substrate of constant thickness h_0 and porosity ϕ , the layer thickness is constant $\partial h_0/\partial t = 0$. The flow velocity in the porous layer can be described by Darcy's law with velocity $u_p(r, t)$. Following the same steps as equations (S.1-S.5) and substituting w_0 for the vertical velocity at the interface between the blister and porous layer, we obtain

$$\frac{1}{r} \frac{\partial}{\partial r} (r\phi u_p h_0) + w_0 = 0, \quad \text{when } r < R \quad (\text{porous layer}). \quad (\text{S.6})$$

Equations (S.5) and (S.6) give

$$\frac{\partial h}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r\bar{u}h) + \frac{1}{r} \frac{\partial}{\partial r} (r\phi u_p h_0) = 0, \quad \text{when } r < R. \quad (\text{S.7})$$

The height change of the blister is balanced by the radial gradient of fluid flux not only in the blister but also the porous layer. Assuming axisymmetry, it is convenient to integrate the blister mass conservation equation (S.5) radially

$$\int_0^R \frac{\partial}{\partial r} (r\bar{u}h) dr + \int_0^R r \frac{\partial h}{\partial t} dr - \int_0^R r w_0 dr = 0 \quad (\text{S.8})$$

Since the volume of the blister is $V(t) = 2\pi \int_0^R r h dr$, and no fluid is injected during relaxation so that $r\bar{u}h|_0 = 0$, the above equation gives the global mass conservation law for the blister

$$\frac{dV}{dt} - \int_0^R 2\pi r w_0 dr = 0, \quad (\text{S.9})$$

where the first term is the rate of blister volume reduction and the second term is the total flux of liquid leaking from the blister into the porous substrate ahead of the blister. Similarly, integrating the mass balance equation (S.6) in the porous layer radially and applying $r u_p h_0|_0 = 0$ (no fluid is injected during relaxation), we obtain

$$r\phi u_p h_0|_R + \int_0^R r w_0 dr = 0. \quad (\text{S.10})$$

Ahead of the blister ($r > R$), $w_0 = 0$ since there is no vertical fluid flux. Thus $\partial(r\phi u_p h_0)/\partial r = 0$, i.e., the horizontal flux $r\phi u_p h_0$ is constant along r . Thus

$$r\phi u_p h_0|_r = R\phi u_p h_0|_R. \quad (\text{S.11})$$

Combining equations (S.9, S.10, S.11), we obtain the global mass conservation in the porous layer for $r > R$

$$\frac{dV}{dt} = -2\pi r\phi u_p h_0, \quad \text{when } r > R \quad (\text{porous layer}). \quad (\text{S.12})$$

654 1.2 Force Balance

655 During the formation of the water-filled blister at the ice-bed interface, the deformation of ice imposes elastic
 656 stresses on the blister. As water in the blister leaks into the porous substrate, the elastic stresses relax.
 657 While the elastic stresses act as a driving force for the blister relaxation, the viscous stresses in the fluid flow
 658 (along the r direction) resist the relaxation. We now give an approximate description of the time-dependent
 659 relaxation. The pressure source in the system, i.e. the elastic driving stresses $P(t)$, is reduced along the
 660 the flow due to the radial pressure gradient $\partial p/\partial r < 0$ that drives the viscous flow in the porous substrate,
 661 and eventually reaches the background pressure. The background pressure (the overburden pressure of ice)
 662 is assumed constant with space and time around the blister, thus does not affect the relaxation dynamics
 663 (see Supplementary Information Section 2). Assuming the viscous resistance in the blister is negligibly small
 664 compared with the viscous resistance in the porous layer (see Supplementary Information Section 1.5), the
 665 time-dependent dynamics can be thus modeled as

$$666 P(t) + \int_R^{R_p(t)} \frac{\partial p(r, t)}{\partial r} dr = 0, \quad (S.13)$$

666 where $R_p(t)$ is the position of the advancing front of the liquid in the porous substrate. For convenience,
 667 we introduce a characteristic height scale $H(t) = h(r = 0, t)$ and use the fixed blister radius R as the radial
 668 length scale so that

$$668 r = Rs, \quad \text{and} \quad h(r, t) = H(t)\Omega(s), \quad (S.14)$$

669 where s and $\Omega(s)$ are dimensionless. Note that here we assume the dimensionless cavity shape $\Omega(s)$ is
 670 independent of time, i.e., the relaxation dynamics is self-similar [4]. The total volume of the blister can be
 671 written as

$$671 V(t) = 2\pi \int_0^R rh(r, t) dr = 2\pi H(t)R^2\alpha, \quad \text{where} \quad \alpha \equiv \int_0^1 s\Omega(s) ds \quad (S.15)$$

672 is a time-independent dimensionless parameter. The exact elastic stress distribution $p(r, t)$ around the blister
 673 is a function of the shape of the cavity $h(r, t)$ (equation (2.1) in [7]). To compare the model with experimental
 674 and field data, we will derive the solution for the blister volume $V(t)$ as a function of time.

675 For small elastic strains, $H/R \ll 1$, the elastic stresses, analogous to Hooke's law, scale linearly with the
 676 vertical displacement $P(t) \propto H(t)$. Here, using equation (2.1) in [7] and (S.15), we approximate the elastic
 677 stress with the time-dependent pressure

$$677 P(t) = \frac{E}{2(1-\nu^2)} \frac{H(t)}{R} = \frac{E}{2(1-\nu^2)} \frac{V(t)}{2\alpha\pi R^3}. \quad (S.16)$$

678 1.2.1 Porous substrate

679 Fluid flow through a porous medium obeys Darcy's law, where the (radial) fluid flux q (volume per unit
 680 time per unit area crossing the flow) is linearly proportional to the pressure gradient $\partial p/\partial r$. In glaciology
 681 the same approach was used by Weertman to describe the water flow through a porous rock with a uniform
 682 permeable layer thickness below the ice sheet [9]. Note that the fluid flux q is related to the fluid velocity u_p
 683 in a porous medium with porosity ϕ (volume of pores normalized by total volume) via $q = \phi u_p$, since fluid
 684 flux is only contributed by the flow in the pores. For a fluid with viscosity μ and permeability k , Darcy's
 685 law gives

$$685 \frac{\partial p}{\partial r} = -\frac{\mu}{k} q = -\frac{\mu\phi}{k} u_p. \quad (\text{porous layer}) \quad (S.17)$$

686 Integrating equation (S.17) and using equation (S.12), we obtain

$$687 \int_R^{R_p(t)} \frac{\partial p}{\partial r} dr = \int_R^{R_p} -\frac{\mu\phi u_p}{k} dr = \frac{\mu}{2\pi h_0 k} \frac{dV}{dt} \ln\left(\frac{R_p}{R}\right). \quad (S.18)$$

688 Since the total water volume V_{tot} is a combination of water in the blister and the porous substrate, $V_{tot} = V(t) + \phi\pi h_0 R_p(t)^2$. Thus

$$689 \frac{R_p(t)}{R} = \sqrt{\frac{V_{tot} - V(t)}{\phi\pi h_0 R^2}}. \quad (S.19)$$

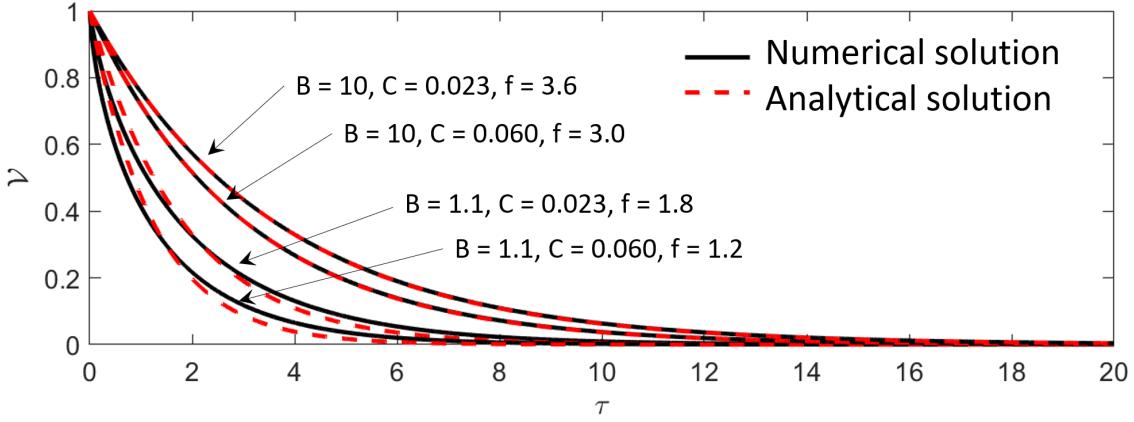
690 Equations (S.18) and (S.19) give the pressure drop along the flow in the porous layer as a function of $V(t)$

$$691 \int_R^{R_p(t)} \frac{\partial p}{\partial r} dr = \frac{\mu}{4\pi h_0 k} \frac{dV}{dt} \ln\left(\frac{V_{tot} - V(t)}{\phi\pi h_0 R^2}\right), \quad \text{for} \quad r > R \quad (S.20)$$

692 Finally, substituting equations (S.16) and (S.20) into (S.13), we obtain a first-order ordinary differential
 693 equation that governs the time evolution of the blister volume $V(t)$,

$$694 \frac{E}{2(1-\nu^2)} \frac{V}{2\alpha\pi R^3} + \frac{\mu}{4\pi h_0 k} \ln\left(\frac{V_{tot} - V}{\phi\pi h_0 R^2}\right) \frac{dV}{dt} = 0, \quad (S.21)$$

695 with an initial blister volume $V(t = 0) = V_i$. The second term in the above equation result from the viscous
 696 dissipation in the porous substrate, respectively. The first term represents the driving force of the system,
 697 the elastic stresses.



Supplementary Figure 1: Model solutions. The dimensionless blister volume \mathcal{V} as a function of dimensionless time τ , defined in equation (S.22). The analytical exponential solutions (equation (S.27), red dashed curves) approximate the numerical solutions (black solid curves) of the full non-linear ODE (equation (S.23)) for a range of B, C (defined in equation (S.24)) and the corresponding f (defined in equation (S.26)).

695 1.3 Non-dimensionalization

696 For convenience, we define the dimensionless volume and time as

$$\mathcal{V} \equiv \frac{V}{V_i} \quad \text{with} \quad \tau \equiv t \frac{Ekh_0}{\mu(1-\nu^2)R^3}, \quad (\text{S.22})$$

697 so that equation (S.21) can be non-dimensionalized

$$\mathcal{V} + \alpha \ln \left(\frac{B - \mathcal{V}}{C} \right) \frac{d\mathcal{V}}{d\tau} = 0, \quad \text{I.C.} \quad \mathcal{V}(0) = 1, \quad (\text{S.23})$$

698 where $B \equiv \frac{V_{tot}}{V_i}$ and $C \equiv \frac{\phi\pi h_0 R^2}{V_i}$. (S.24)

699 Although $V(t)$ depends on nine parameters $E, \nu, \mu, R, h_0, k, \phi, V_i, V_{tot}$ (equation (S.21)), we found that the
700 behaviour of the dimensionless volume \mathcal{V} as a function of dimensionless time τ depends on two dimensionless
701 parameters B and C . B is the ratio between total water volume injected into the system and initial blister
702 volume and C is the ratio between water volume just beneath the blister and the initial blister volume.
703 Based on field data $B \approx 1.14$ (based on the initial blister volume V_0 and lake volume V_{tot} estimated for the
704 2012 North lake drainage event [8]), and $C = 0.04 - 0.11$ (Supplementary Table 3). The numerical solutions
705 to equation (S.23) for a range of B, C are plotted in Supplementary Fig. 1 as black curves.

706 1.4 Analytical solution

707 Since $\ln \left(\frac{B - \mathcal{V}}{C} \right)$ varies slowly with \mathcal{V} , it can be approximated with a time-independent constant $\ln \left(\frac{B - \gamma}{C} \right)$,
708 where γ is a numerical constant to be determined below. Equation (S.23) can be approximated with a linear
709 ODE

$$\mathcal{V} + f \frac{d\mathcal{V}}{d\tau} = 0, \quad \text{with} \quad \mathcal{V}(0) = 1, \quad (\text{S.25})$$

710 where $f \equiv \alpha \ln \left(\frac{B - \gamma}{C} \right)$ (S.26)

711 and yields an exponential solution for \mathcal{V}

$$\mathcal{V} = \exp \left(-\frac{\tau}{f} \right). \quad (\text{S.27})$$

712 To find the value of γ so that equation (S.25) approaches (S.23), we choose γ to be \mathcal{V} averaged over a time
713 scale of f , i.e., $\gamma = f^{-1} \int_0^f \mathcal{V} d\tau = \int_0^f \exp(-\tau/f) d\tau = (e-1)/e \approx 0.63$. Supplementary Fig. 1 shows that the
714 exponential solution (red dashed curve, equation (S.27)) is a good approximation to the numerical solution
715 (black solid lines) to the non-linear ODE (equation (S.23)).

716 To compare with the field data, we also obtain a solution for the blister height $h(r, t)$. The height of
717 the blister at any location directly relates to the dimensionless volume. Since the blister radius remains
718 unchanged during relaxation, the volume change results from a change in height. The blister height $h(r, t)$
719 relates to its initial value $h(r, t = 0)$ via the formula

$$\mathcal{V} = \frac{V}{V_i} = \frac{2\pi \int_0^R h(r, t) r dr}{2\pi \int_0^R h(r, t = 0) r dr} = \frac{2\pi \alpha'(r) R^2 h(r, t)}{2\pi \alpha'(r) R^2 h(r, t = 0)} = \frac{h(r, t)}{h(r, t = 0)} = \mathcal{H}, \quad (\text{S.28})$$

720 where $\alpha'(r) \equiv \alpha H(t)/h(r, t)$ is related to the self-similar shape of the blister and so is independent of time
721 and space. Therefore the height of the blister, measured at a given location, rescaled by its initial value \mathcal{H} ,
722 also has an exponential response

$$\mathcal{H} = \exp \left(-\frac{\tau}{f} \right), \quad (\text{S.29})$$

723 which is directly compared with field data in Fig. 3 in the main text. The numerical pre-factor f can
 724 be calculated for each field data set using B , C , and $\alpha \approx 0.32$ (found experimentally from fitting the
 725 experimental data to equation (S.27)). We estimate that for the nine observational data sets presented in
 726 Fig. 3 in the main text $f \approx 0.5 - 0.8 = \mathcal{O}(1)$ (Supplementary Table 3), which is remarkably close to the
 727 experimental value $f \approx 0.6 - 0.7$. The effect of such range of f on the solution (equation (S.27)) is shown in
 728 Supplementary Fig. 1.

729 All relevant parameters used in this paper (dimensionless and dimensional) for both the experimental
 730 system and field observations are listed in Supplementary Table 3.

731 1.5 Viscous dissipation in the blister

732 In this section we show the negligible viscous dissipation in the blister compared with that in the porous
 733 sheet. Below We calculate the viscous pressure drop along the flow in the blister $\Delta p_{vb} = \int_0^R \partial p / \partial r dr$ and
 734 compare it with the viscous pressure drop in the porous sheet $\Delta p_{vp} = \int_R^{R_p} \partial p / \partial r dr$ (equation (S.20)).

735 In the limit where viscous effects are important relative to inertial effects, i.e. a representative Reynolds
 736 number $Re_{\text{eff}} = \rho \bar{u} H^2 / (\mu R) \ll 1$, the flow in the blister is laminar. We solved the Stokes equation $\partial p / \partial r =$
 737 $\mu \partial^2 u / \partial z^2$ (neglecting the r -derivatives terms since $z \ll r$) with boundary conditions $u(z = h) = 0$ and
 738 $u(z = 0) = \phi u_p$, and obtain a variant of Darcy's law,

$$\frac{\partial p}{\partial r} = -\frac{\mu}{h^2 S_\ell} \bar{u}, \quad \text{where } S_\ell \equiv \left(\frac{1}{12} + \frac{k}{2h^2} \right), \quad (\text{blister}) \quad (S.30)$$

739 where S_ℓ is a slip factor that couples the effect of non-zero velocity at the interface between the blister and
 740 porous layer. Equations (S.7), (S.17), and (S.30) give

$$\frac{\partial h}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r}{\mu} (h^3 S_\ell + h_0 k) \frac{\partial p}{\partial r} \right) = 0, \quad \text{when } r < R \quad (S.31)$$

741 Rearranging equation (S.31), we obtain

$$\frac{\partial p}{\partial r} = \frac{\frac{\mu}{r} \int_0^r \frac{\partial h}{\partial t} r' dr'}{h^3 S_\ell + h_0 k} \quad (S.32)$$

742 The integrated pressure drop along the flow in the blister, considering the velocity slipping against the porous
 743 layer, is thus

$$\int_0^R \frac{\partial p}{\partial r} dr = \int_0^R \frac{\frac{\mu}{r} \int_0^r r' \frac{\partial h}{\partial t} dr'}{h^3/12 + hk/2 + h_0 k} dr, \quad \text{for } r < R \quad (S.33)$$

744 To rewrite the pressure drop in terms of $V(t)$, we substitute equations (S.14) and (S.15) into (S.33) to find

$$\int_0^R \frac{\partial p}{\partial r} dr = \frac{\mu R^2}{H^3} \frac{dH}{dt} \int_0^1 \frac{s^{-1} \int_0^s \Omega(s) s' ds'}{\Omega(s)^3/12 + \Omega(s) k/(2H^2) + h_0 k/H^3} ds = \frac{4\pi^2 \alpha^2 \mu R^6}{V^3} \frac{dV}{dt} \beta. \quad (S.34)$$

$$\text{where } \beta \equiv \int_0^1 \frac{s^{-1} \int_0^s \Omega(s) s' ds'}{\Omega(s)^3/12 + \Omega(s) k/(2H^2) + h_0 k/H^3} ds \quad (S.35)$$

745 is a dimensionless parameter. Although $H(t)$ is time-dependent, the typical transmissivity $kh_0 \approx \mathcal{O}(1) -$
 746 $\mathcal{O}(10^2)$ mm³ (Fig. 3 in the main text), porous layer thickness $h_0 \approx 0.1$ m, and blister height $H \approx 1$ m give
 747 $k/H^2 \ll 1$, $h_0 k/H^3 \ll 1$. Thus β can be approximated as $\beta \approx \int_0^1 \frac{s^{-1} \int_0^s \Omega(s) s' ds'}{\Omega(s)^3/12} ds$, which is independent of
 748 time.

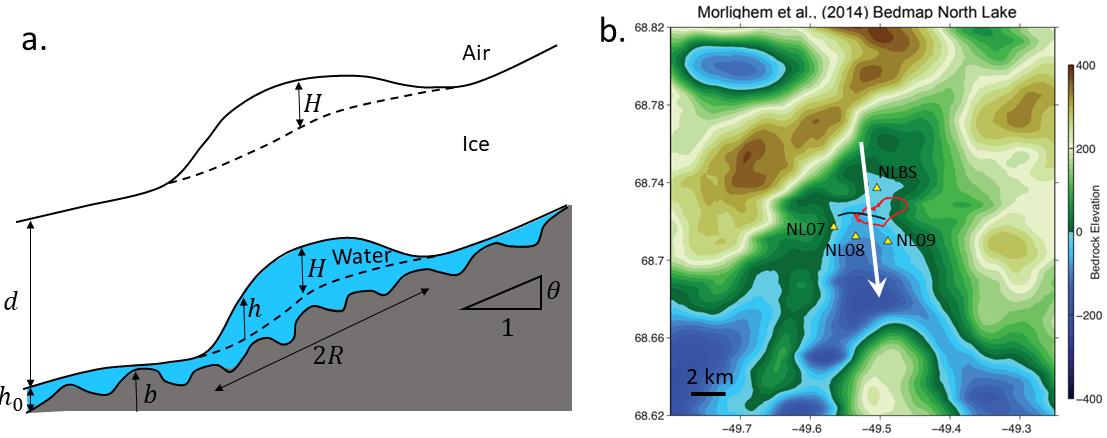
749 Combining equations (S.20) and (S.34), the viscous dissipation in the blister compared with that in the
 750 porous sheet can be quantified by a dimensionless parameter

$$A \equiv \frac{\Delta p_{vb}}{\Delta p_{vp}} = \frac{\int_0^R \partial p / \partial r dr}{\int_R^{R_p} \partial p / \partial r dr} \approx \frac{16\pi^3 R^6 kh_0}{V_i^3}.$$

751 Based on field data $A = 0.01 - 0.19$ (Supplementary Table 3), thus the viscous resistance in the blister is
 752 negligible compared to that in the porous sheet. The dominant viscous resistance in the porous sheet ($A \ll 1$)
 753 yields a simple balance between the \mathcal{V} and $d\mathcal{V}/d\tau$ terms in equation (S.25), resulting in an exponential
 754 solution (equation (S.27)). In our experiments, we design the parameters so that $A \approx 0.001 - 0.002 \ll 1$
 755 (Supplementary Table 3) and we find that the experiments agree with the exponential solution (Fig. 2d in
 756 the main text).

757 1.6 Pre-filled porous substrate

758 If water fully fills the subglacial drainage system prior to the blister relaxation, the water in the blister
 759 could enter the water-filled porous sheet by deforming the pores (Section 4.5 in Hewitt et al. (2018) [2]).
 760 Alternatively, if we assume that the water pressure in the drainage system at a radial distance R_o away from
 761 the blister center is unperturbed by the formation and relaxation of blister and within $r < R_0$ the drainage
 762 system is fully filled with water, the blister height still obeys $\mathcal{H} = \exp(-\frac{\tau}{f})$ (equation (S.29)) where the
 763 numerical pre-factor is defined as $f \equiv \alpha \ln(R_0/R)^2$. In reality R_0 could be determined by the location of
 764 partially empty channels and sheets [3] where the subglacial drainage system is “under-pressured” [3] due to
 765 the exposure of subglacial water pressure to atmospheric pressure; this is similar to the empty part of the
 766 porous substrate in our experiments. Note that when R_0 changes from 10 to 50 km f only increases from
 767 1 to 2, which is of the same order of magnitude as the value calculated for the model with a partially filled
 768 porous sheet ($f \approx 0.5 - 0.8$ (Supplementary Table 3)). Thus the inferred transmissivity kh_0 for a pre-filled
 769 drainage system is of the same order of magnitude as that for a partially filled porous sheet.



Supplementary Figure 2: A blister on a inclined bed. (a) Schematic of a blister of radius R and characteristic height H under an ice sheet of thickness d on a bed with spatially varying bed elevation b and characteristic slope θ . The characteristic thickness of the drainage system is h_0 . Dashed lines denote the ice surface and bottom after the ice-sheet relaxation. (b) The bed topography near the North Lake inferred by Morlighem et al. (2014) [6]. The triangles, black curve, and red contour are the GPS stations, a vertical hydrofracture through which the lake drains, and the 2011 Lake contour, respectively. The largest bed slope, $\theta \approx 0.04$, aligns with the white arrow.

770 2 Effects of bed slope, ice overburden, and hydrostatic pressure 771 on blister relaxation

772 The blister model in this paper assumes that (1) bed slope, (2) ice overburden pressure, and (3) hydrostatic
773 pressure of water in the blister have negligible effects on the ice-sheet relaxation dynamics. In this section
774 we estimate these effects. On an inclined bed with elevation b , the water flux \mathbf{q} in the subglacial water sheet
775 as a function of the hydraulic potential ϕ is

$$\mathbf{q} = -\frac{k}{\mu} \nabla \phi. \quad (\text{S.37})$$

776 The hydraulic potential involves a bed elevation-related contribution $\rho_w g b$ and the water pressure p in the
777 water sheet

$$\phi = \rho_w g b + p \quad \text{and} \quad p = \rho_i g d + \rho_w g h + \Delta p_e, \quad (\text{S.38})$$

778 where ρ_i and ρ_w are the density of ice and water, respectively, d is the ice-sheet thickness, h is the blister
779 height, and Δp_e is the the third term in the water pressure that balances the elastic stresses of the deformed
780 ice sheet due to the blister. The horizontal hydraulic potential gradient in equation (S.37) can be written as

$$\nabla \phi = \rho_w g \nabla b + \rho_i g \nabla d + \rho_w g \nabla h + \nabla(\Delta p_e) \quad (\text{S.39})$$

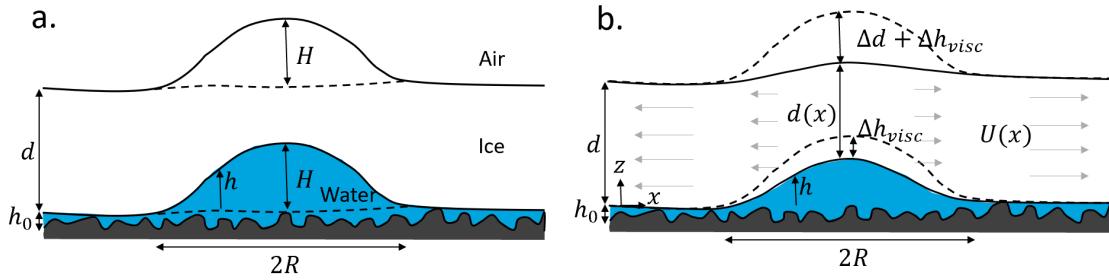
781 Below we estimate the magnitude of each term in equation (S.39) and find that the elastic-stress term
782 dominates. For a blister (height $H \approx 1$ m and radius $R \approx 2$ km) under an ice sheet (Young's modulus $E \approx 10$
783 GPa), the gradient of elastic stresses is $\nabla(\Delta p_e) \approx EH/R^2 \approx 2500$ Pa/m. The bed slope beneath and around
784 the blister is roughly $\theta \approx 0.04$. The bed-elevation related term in equation (S.39) is $\rho_w g \nabla b \approx \rho_w g \theta \approx 400$
785 Pa/m $\ll \nabla(\Delta p_e)$, which is small compared with the elastic term.

786 In addition, the ice overburden pressure is negligible due to the small variation of ice-sheet thickness d
787 over the blister length scale $\rho_i g \nabla d \ll \nabla(\Delta p_e)$. The contribution of the hydrostatic pressure due to the water
788 height in the blister is $\rho_w g \nabla h \approx \rho_w g H/R \approx 5$ Pa/m $\ll \nabla(\Delta p_e)$, and also is also negligibly small. Thus
789 (1) bed elevation, along with (2) overburden pressure of ice, and (3) the hydrostatic pressure in the blister
790 contribute little to the hydraulic potential gradient (equation (S.39)) when a blister is considered, and have
791 small effects on the water flux q compared with the blister-induced elastic stress. For simplicity we neglect
792 these effects in the blister relaxation model (Supplementary Information Section 1). Note that the bed slope
793 needs to be as large as $\theta > EH/(R^2 \rho_w g) \approx 0.25$ to have a non-negligible effect on blister relaxation.

794 Therefore in this paper the water flux in the water sheet is approximately $\mathbf{q} = -k/\mu \nabla p$, where the water
795 pressure in the blister is of the same order of magnitude as the elastic stress $p = \mathcal{O}(EH/R)$, which is the
796 dominant driving stress for the water flow. Note that when the elastic stress has mostly relaxed and the
797 blister thickness is much less than $H < \rho_w g \theta R^2/E \approx 16$ cm, the bed topography becomes the dominant
798 mechanism to drive the subglacial flow.

799 3 Viscous effects of ice

800 The blister model assumes that ice is elastic. In this section we estimate the effect of viscous flow in ice
801 sheets on the relaxation of a blister. We consider an extreme case where ice is purely viscous and estimate
802 the surface elevation change h_{visc} compared with that resulting from a pure elastic ice h_{elast} .



Supplementary Figure 3: Blister under a purely viscous ice sheet. (a) A water-filled blister. The dashed lines mark the relaxed positions of the top and bottom of the ice sheet. (b) The decrease of surface elevation between the beginning of blister relaxation (dashed line, same as the solid line in (a)) and a certain time Δt afterwards (solid line) is a combination of the thinning of blister height Δh_{visc} and the thinning of ice sheet thickness Δd by ice flowing (gray arrows) with varying velocity $U(x)$.

803 3.1 Viscous ice sheet

804 When a viscous ice layer is on top of a water-filled blister, the lowering of the vertical surface elevation could
 805 result from the (1) thinning of ice-sheet thickness Δd and the (2) thinning of the blister thickness Δh_{visc}
 806 (Supplementary Fig. 3). Below we estimate both contributions.

807 3.1.1 Ice-sheet thinning

808 When a viscous layer of ice is on top of a water-filled blister, the cross-sectional velocity is uniform U
 809 (Supplementary Fig. 3b) due to the free-slip top and bottom boundary conditions. Due to mass conservation
 810 the thinning of ice-sheet thickness depends on the horizontal gradient of vertical flux $\partial d/\partial t + \partial/\partial x(Ud) = 0$.
 811 Note that where ice sits on top of the drainage water sheet the shear stress at the ice-bed interface can be
 812 nonzero depending on the characteristics of the ice-bed contact. Here we only consider a case with zero
 813 shear stress at the bed, which overestimates the ice thinning Δd . The inclined ice-water interface $z = h$ and
 814 non-uniform ice thickness d contribute to the hydraulic potential gradient $\nabla(\rho_{ig}h + \rho_{ig}gd)$ driving the ice
 815 flow. Note that initially $\nabla d \approx \nabla h$ so the total hydraulic potential gradient is on the same order of magnitude
 816 as $\rho_{ig}\nabla h$. Resistance in the ice flow comes from the horizontal gradient of the deviatoric stress τ_{xx} , where
 817 x is the along-flow direction. The balance of the driving and resisting mechanism gives $\tau_{xx}/R \approx \rho_{ig}H/R$.
 818 The rheology of ice is given by Glen's flow law [1] $\tau_{xx} \approx B\dot{\epsilon}_{xx}^{1/n} \approx B(U/R)^{1/n}$ where $n \approx 3$ and B is
 819 temperature-dependent. Thus $U \approx (\rho_{ig}H/B)^{1/n}d$. Along with mass conservation, we obtain the rate of ice
 820 thinning scales as

$$\frac{\Delta d}{\Delta t} \approx \frac{Ud}{R} \approx \left(\frac{\rho_{ig}H}{B} \right)^n d. \quad (S.40)$$

821 We find that for a typical range of the viscosity factor $B \approx 2.7 \times 10^5 \sim 10^6 \text{ Pa}\cdot\text{year}^{1/3}$ (at ice temperature
 822 $T = -30 \sim -5^\circ\text{C}$) [5], $H \approx 1 \text{ m}$ and $d \approx 1 \text{ km}$, so that after $\Delta t = 10 \text{ days}$ the ice only thins $\Delta d \approx 0.02 \sim 1$
 823 mm.

824 3.1.2 Blister thinning

825 The driving force that causes the thinning of the blister Δh_{visc} (Supplementary Fig. 3b) is the gradient of
 826 hydrostatic pressure in the blister $\rho_{wg}\nabla h$, because there are now no elastic stresses in the ice sheet. The
 827 resisting mechanism for relaxation of the surface elevation is thus the viscous dissipation of water flux q in the
 828 water sheet of thickness h_0 and effective permeability k . A balance between the driving hydrostatic pressure
 829 and resisting viscous dissipation along the water flux is $\rho_{wg}H \approx \mu qR/k$. The rate of blister volume reduction
 830 supplies the water flux in the water sheet, i.e., $\Delta V/\Delta t \approx qh_0R$. Here we drop the $\mathcal{O}(1)$ pre-factors (e.g. π).
 831 The decrease in vertical blister height scales with a decrease in volume as $\Delta h_{visc}R^2 \approx \Delta V$. Therefore the
 832 rate of blister thinning under a viscous ice sheet scales as

$$\frac{\Delta h_{visc}}{\Delta t} \approx \frac{\rho_{wg}Hkh_0}{R^2\mu}. \quad (S.41)$$

833 We find that for water viscosity $\mu \approx 1 \text{ mPa}\cdot\text{s}$, sheet transmissivity $kh_0 \approx 1 \text{ mm}^3$, and the typical values of
 834 H, R used above, after $\Delta t = 10 \text{ days}$ the blister thins $\Delta h_{visc} \approx 2 \text{ mm}$.

835 3.2 Elastic ice sheet

836 On the other hand, in the original blister model ice is considered elastic and the relaxation driving force is the
 837 elastic stress cause by the ice-sheet deformation. The driving elastic stress and resisting viscous dissipation
 838 along the water flux give $EH/R \approx \mu qR/k$. In the same way as for viscous ice, the volume conservation of
 839 water gives $\Delta V/\Delta t \approx qh_0R$ and $\Delta h_{elast}R^2 \approx \Delta V$. The rate of decrease in blister height due to the elastic
 840 relaxation of ice sheet is thus

$$\frac{\Delta h_{elast}}{\Delta t} \approx \frac{EHkh_0}{R^3\mu}. \quad (S.42)$$

841 3.3 Comparison

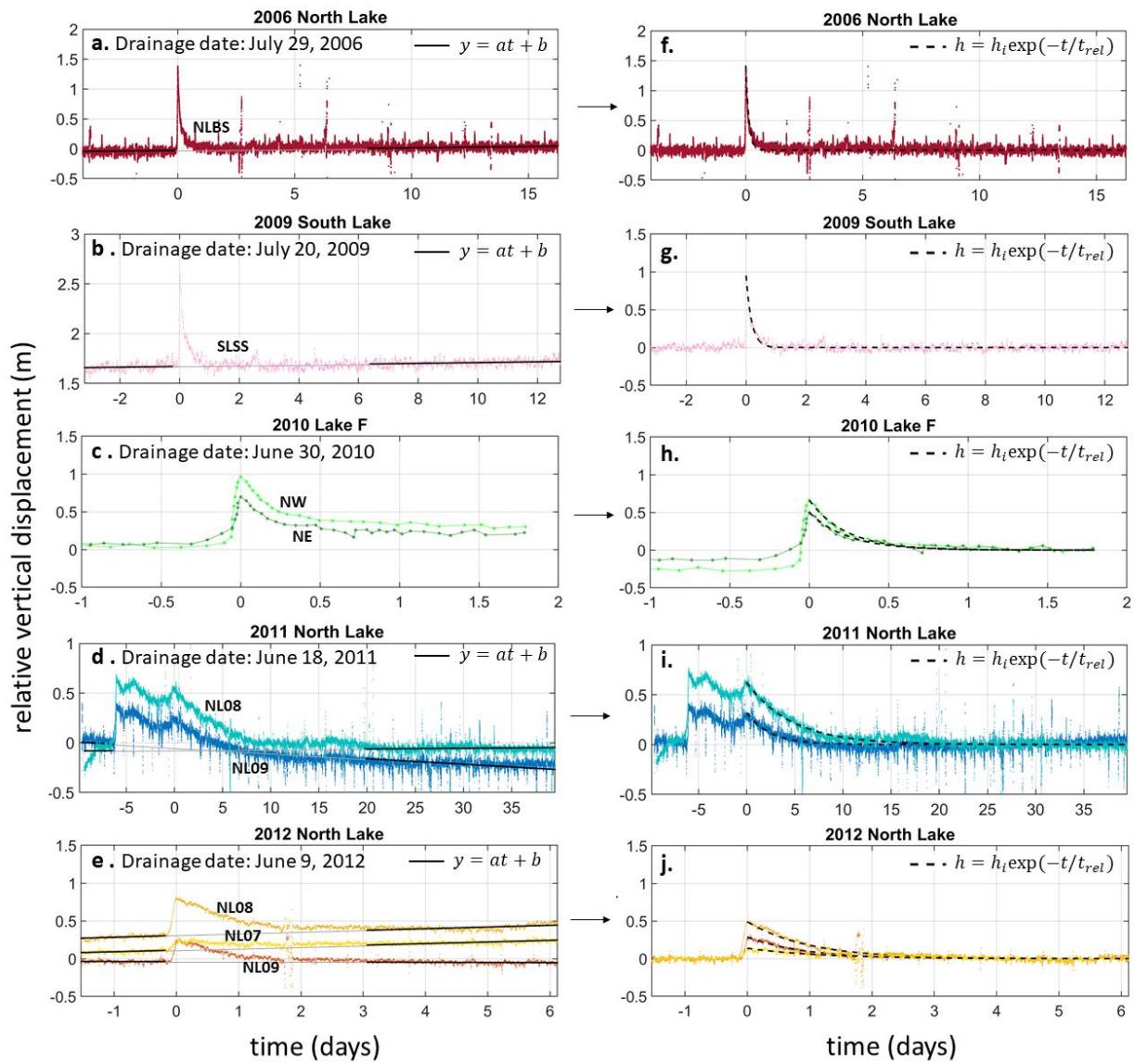
842 Comparing equations (S.40), (S.41), and (S.42), we find that within a given time period Δt and the typical
843 parameter values of E, R, H, kh_0, d, μ, B used above, the vertical blister height change under a purely elastic
844 ice sheet is much larger than the vertical surface elevation change under a purely viscous ice sheet.

$$\frac{\Delta h_{elast}}{\Delta h_{visc}} \approx \frac{E}{\rho_w g R} \approx 10^3, \quad \frac{\Delta h_{elast}}{\Delta d} \approx \frac{EHkh_0}{R^3 \mu d} \left(\frac{B}{\rho_i g H} \right)^n \approx 10^3 - 10^5. \quad (S.43)$$

845 Thus, the reduction of blister height is dominantly contributed by the elastic relaxation of ice rather than
846 the viscous ice flow.

847 References

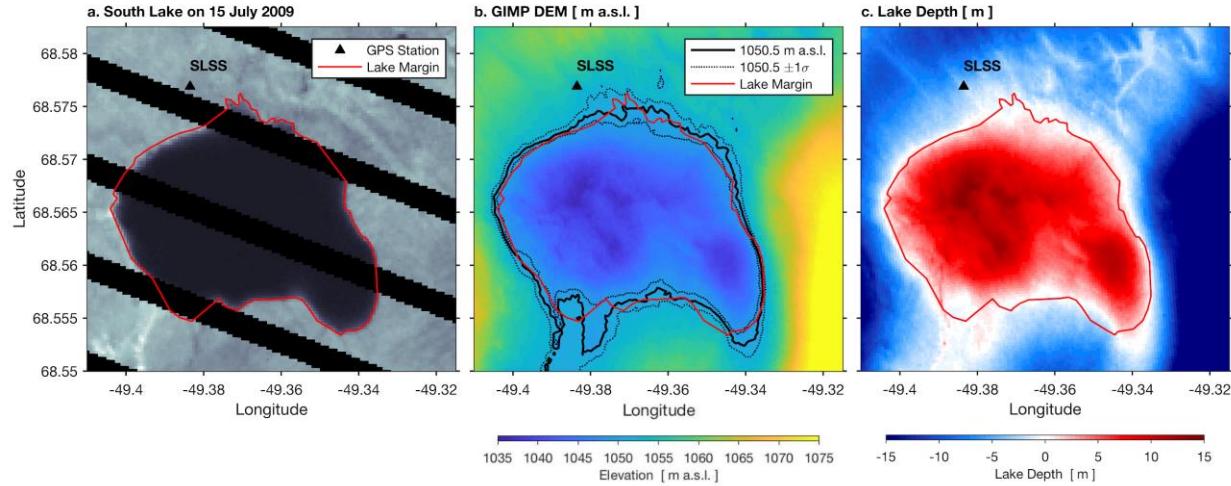
- 848 [1] K. M. Cuffey and W. S. B. Paterson. *The physics of glaciers*. Academic Press, 2010.
- 849 [2] D. R. Hewitt, G. P. Chini, and J. A. Neufeld. The influence of a poroelastic till on rapid subglacial
850 flooding and cavity formation. *J. Fluid Mech.*, 855:1170–1207, 2018.
- 851 [3] I. J. Hewitt, C. Schoof, and M. A. Werder. Flotation and free surface flow in a model for subglacial
852 drainage. part 2. channel flow. *J. Fluid Mech.*, 702:157, 2012.
- 853 [4] C. Y. Lai, Z. Zheng, E. Dressaire, G. Z. Ramon, H. E. Huppert, and H. A. Stone. Elastic relaxation of
854 fluid-driven cracks and the resulting backflow. *Phys. Rev. Lett.*, 117:268001, 2016.
- 855 [5] R. LeB. Hooke. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, labo-
856 ratory data, and field measurements. *Reviews of Geophysics*, 19(4):664–672, 1981.
- 857 [6] M. Morlighem, E. Rignot, J. Mouginot, H. Seroussi, and E. Larour. Deeply incised submarine glacial
858 valleys beneath the greenland ice sheet. *Nature Geoscience*, 7(6):418–422, 2014.
- 859 [7] D. A. Spence and P. Sharp. Self-similar solutions for elastohydrodynamic cavity flow. *Proc. R. Soc. A*,
860 400(1819):289–313, 1985.
- 861 [8] L. A. Stevens, M. D. Behn, J. J. McGuire, S. B. Das, I. Joughin, T. Herring, D. E. Shean, and M. A.
862 King. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. *Nature*,
863 522(7554):73, 2015.
- 864 [9] J. Weertman. Effect of a basal water layer on the dimensions of ice sheets. *Journal of Glaciology*,
865 6(44):191–207, 1966.



Supplementary Figure 4: GPS uplift data processing. The relative vertical displacement data from individual GPS stations for 5 drainage events (a-e) and the detrended data (f-j). The background variation of vertical displacement in time t due to ice-sheet movement is linearly fit to $y = at + b$ (black lines) before and after the uplift peak. The background linear trend is then subtracted from the GPS data to yield the detrended vertical displacements (f-j). Details of the time range used for linear curve fitting are in Methods. The relaxation time t_{rel} (vertical axis in Fig. 3a) is obtained by fitting an exponential curve to the detrended vertical

displacements $h(t)$. The 9 detrended vertical displacements are used in Fig. 3b-c.

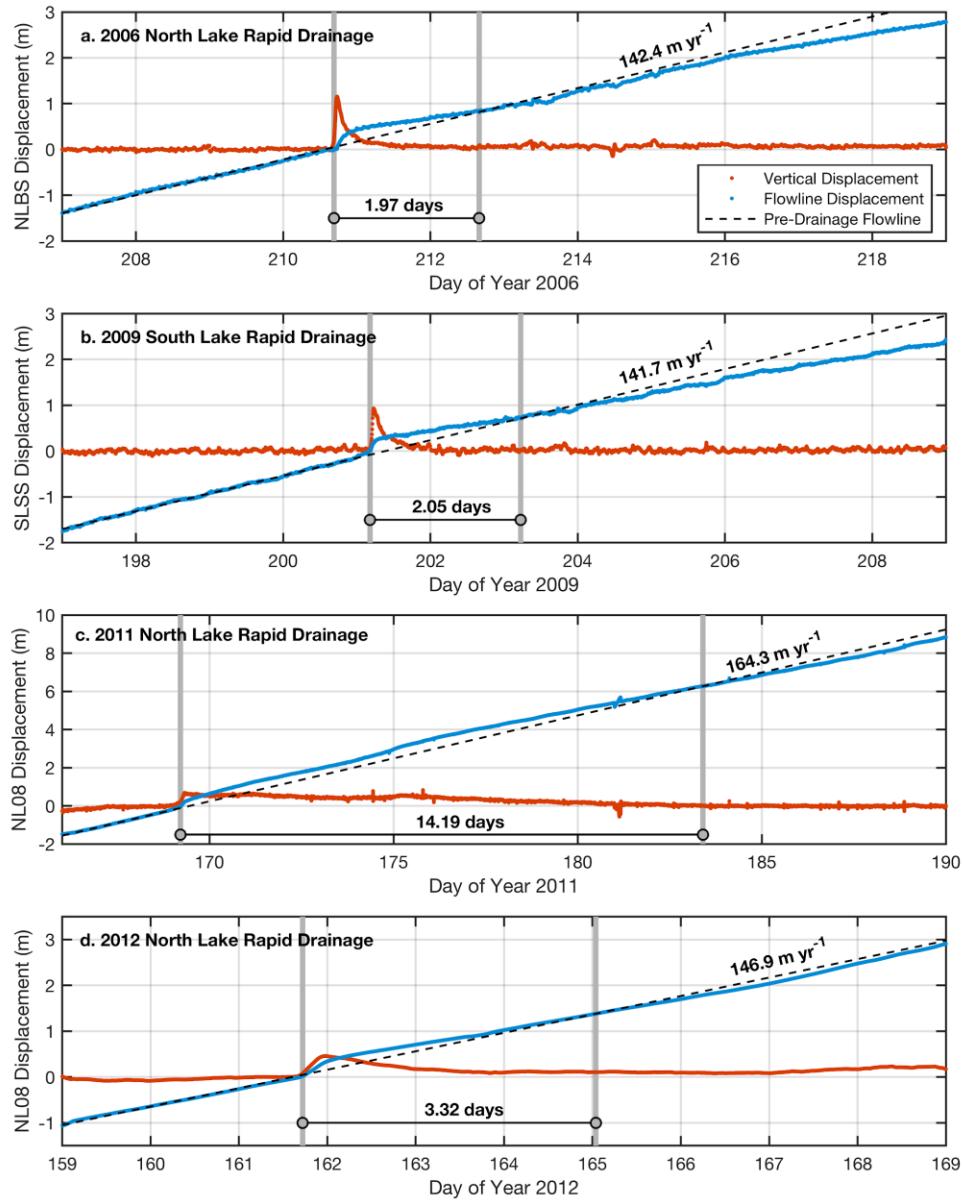
867



868

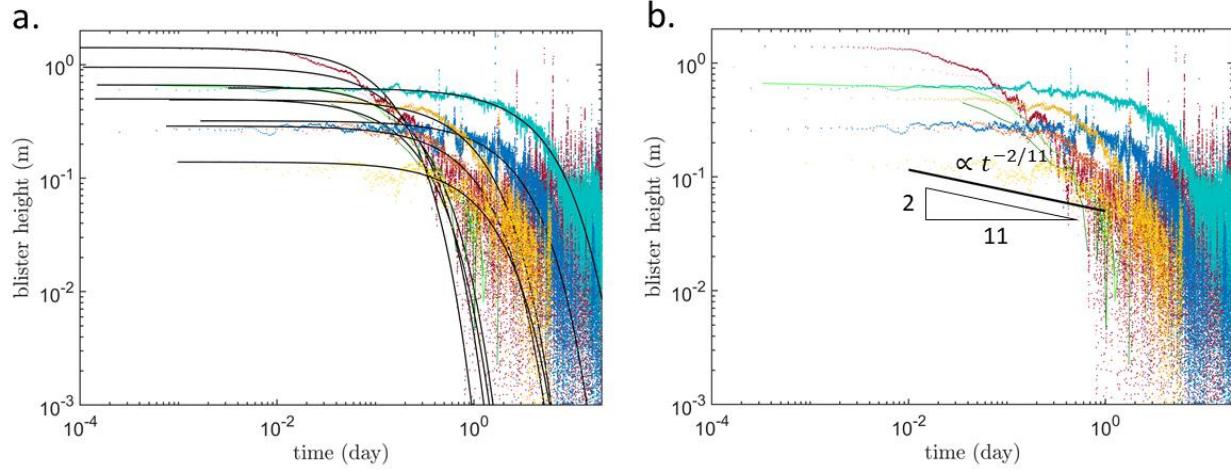
Supplementary Figure 5: South Lake in 2009. (a) Landsat 7 image of South Lake on July 15, 2009, five days before rapid drainage. Red line marks lake margin. SLSS GPS station shown with black triangle. (b) 30-m resolution MEaSUREs Greenland Ice Mapping Project (GIMP) Digital Elevation Model (DEM) from GeoEye and WorldView Imagery, Version 1 (36, 37) for South Lake region. Solid Black contour shows 1050.5 m a.s.l., with dashed contours showing $1050.5 \pm 1\sigma = 1050.5 \pm 1.27$ m a.s.l. (c) Lake depth relative to 1050.5 m a.s.l. lake shoreline.

869



Supplementary Figure 6: Vertical and along-flow displacement during North and South Lake drainages. For all panels, station (red) vertical displacement and (blue) along-flow displacement for an individual GPS station are shown. Dashed black line shows a linear fit to pre-drainage along-flow displacement, with along-flow velocity (slope) noted in the text on panel. Grey vertical bars indicate time of drainage and time of along-flow displacement attaining the value predicted by pre-drainage along-flow velocities, with the duration between these time points in days noted in the text on panel. North Lake drainages for (a) 2006, (c) 2011, and (d) 2012 are shown. South Lake drainage for (b) 2009 is shown. The relationship

between vertical displacement and along-flow velocity around a moulin has been reported in (39).



871

872 **Supplementary Figure 7: Comparison of different models for blister height.** (a) Our model
 873 predicts an exponential decrease of blister height with time (equation (7)). The exponential decay
 874 of blister height $h(t) = h_i \exp(-t/t_{rel})$ fitted to all GPS data as a function of time is shown by the
 875 solid black curves. The fitted t_{rel} is used to calculate the hydraulic transmissivity (Fig. 3a). The
 876 color of each set of uplift data is the same as in Fig. 3. (b) Comparison of the GPS data with a
 877 power-law (black line) with exponent -2/11 (14).

878

879

880

881

882

883

884

Lake name	Lake GPS location	Lake drainage date
North Lake	68.72° N, 49.50° W	July 29, 2006
		June 18, 2011
		June 9, 2012
South Lake	68.57° N, 49.37° W	July 20, 2009
Lake F	67.01° N, 48.74° W	June 30, 2010

885

Supplementary Table 1: Locations and dates of the lake drainage events.

886

887

888

889

890

891

892

893

894

895

896

Station	Year	V_{tot} (km)	h_{max} (m)	R (km)	kh_0 (mm ³)
NLBS	2006	± 0.010	± 0.16	± 0.4	± 91.4
SLSS	2009	± 0.010	± 0.13	± 0.5	± 55.8
NE	2010	± 0.027	± 0.09	± 0.2	± 14.4
NW	2010	± 0.027	± 0.09	± 0.2	± 15.0
NL09	2011	± 0.001	N/A	± 0.1	± 0.5
NL08	2011	± 0.001	N/A	± 0.1	± 0.3
NL09	2012	± 0.001	N/A	± 0.1	± 2.4
NL08	2012	± 0.001	N/A	± 0.1	± 2.2
NL07	2012	± 0.001	N/A	± 0.1	± 1.8

Supplementary Table 2: Parameter uncertainties. Error bars for parameters listed in Fig. 3: lake volume V_{tot} , maximum initial blister height h_{max} , blister radius R , and transmissivity kh_0 . The lake volume error bars for the 2009 drainage event are estimated in Methods and for other years are taken from literature (2, 4, 6). The errors associated with h_{max} , R , kh_0 are propagated from the lake volume error, as detailed in Methods.

Definitions of parameters:

Porou sheet properties: Φ : porosity, h_0 : thickness, k : permeability, kh_0 : transmissivity

Elastic layer properties: E : Young's modulus, d : thickness, ν : Poisson's ratio

Liquid: μ : viscosity, V_{tot} : volume of total injected liquid

Blister: R : radius, V_i : initial volume

Dimensionless parameters: $A \equiv \frac{16\pi^3 R^6 kh_0}{V_i^3}$, $B \equiv \frac{V_{tot}}{V_i}$, $C \equiv \frac{\Phi \pi h_0 R^2}{V_i}$, $f \equiv \alpha \ln(\frac{B+2}{C})$, where $\gamma \equiv \frac{e-1}{e} \approx 0.63$

	Porous sheet		Elastic layer			Liquid			Blister			Dimensionless parameters			Numerical factors	
	Φ	kh_0	E	d	ν	μ	V_{tot}	V_i	R	A	B	C	α	f		
Field data	0.5	218.0 mm^3	10 GPa	1 km	0.3	1 mPa \cdot s (water)	0.044 km^3	0.040 km^3	3.2 km	1.0×10^{-2}	1.14	0.04	0.32	0.79		
		100.0 mm^3					0.030 km^3	0.027 km^3	2.9 km	1.5×10^{-2}		0.05		0.75		
		43.0 mm^3					0.018 km^3	0.016 km^3	2.4 km	2.5×10^{-2}		0.06		0.70		
		44.0 mm^3					0.018 km^3	0.016 km^3	2.4 km	2.5×10^{-2}		0.06		0.70		
		1.6 mm^3					0.008 km^3	0.007 km^3	1.8 km	5.6×10^{-2}		0.08		0.61		
		0.9 mm^3					0.008 km^3	0.007 km^3	1.8 km	5.6×10^{-2}		0.08		0.61		
		6.3 mm^3					0.008 km^3	0.007 km^3	2.2 km	1.9×10^{-1}		0.11		0.48		
		5.8 mm^3					0.008 km^3	0.007 km^3	2.2 km	1.9×10^{-1}		0.11		0.48		
		4.8 mm^3					0.008 km^3	0.007 km^3	2.2 km	1.9×10^{-1}		0.11		0.48		
Lab exp.	0.5	98 \times 90 μm^3	217 kPa	1 cm	0.5	0.8 Pas	115 μL	87 μL	7.9 mm	1.6×10^{-3}	1.32	0.10	0.32	0.61		
		52 \times 90 μm^3					108 μL	80 μL	8.1 mm	1.3×10^{-3}	1.35	0.12		0.58		
		20 \times 90 μm^3					120 μL	55 μL	8.6 mm	2.2×10^{-3}	2.18	0.19		0.67		

Supplementary Table 3: Parameters and their definitions used in this study. Although the dimensional governing equation (equation (S.21)) depends on nine dimensional parameters ($\phi, h_0, k, E, \nu, \mu, V_{tot}, V_i, R$), its dimensionless form (equation (29)) only depends on two dimensionless parameters (B, C). We designed the experimental parameters so that the

dimensionless parameters (B, C) of the experiments match that of the field data, meaning experiments fall into the same physical regimes as the field observations. Derivations of the governing equation and the non-dimensionalization are detailed in Supporting Information. Numerical factor $\alpha \approx 0.32$ was found empirically by fitting all experimental data to equation (2). When calculating C we assumed the thickness of the water sheet h_0 is on the order of 0.1 meters (11).