
Supplementary Information

1 Blister relaxation model622

We consider the elastic relaxation of a fluid-filled blister (cavity) beneath an infinite elastic medium and623

above a porous substrate. During the relaxation the fluid in the blister leaks into the porous substrate below624

and ahead of the blister. The radius of the blister R remains unchanged (experimental observation) and the625

total volume Vtot of fluid in both the blister V (t) and the porous layer is fixed.626

1.1 Mass balance627

The radial and vertical velocities in the blister are denoted u and w, respectively. The continuity equation628

for incompressible flow ∇ · u = 0 in cylindrical coordinates, assuming axisymmetry, is629
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Integrating the equation vertically from the bottom z = 0 to the top z = h(r, t) of the blister630 ∫ h

0
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(ru)dz + w|z=h − w|z=0 = 0. (S.2)

Using Leibniz’s rule, equation (S.2) becomes631
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At z = h(r, t), D/Dt(z − h(r, t)) = 0 where D/Dt ≡ ∂/∂t+ u · ∇ is the material derivative. Thus −∂h/∂t−632

u∂h/∂r + w = 0 at z = h(r, t) and equation (S.3) becomes633
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Define the average velocity in the blister as ū ≡ h−1
∫ h

0
udz so that equation (S.4) becomes634
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which governs mass conservation in the blister.635

In the porous substrate of constant thickness h0 and porosity φ, the layer thickness is constant ∂h0/∂t = 0.636

The flow velocity in the porous layer can be describe by Darcy’s law with velocity up(r, t). Following the637

same steps as equations (S.1-S.5) and substituting w0 for the vertical velocity at the interface between the638

blister and porous layer, we obtain639
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(rφuph0) + w0 = 0, when r < R (porous layer). (S.6)

Equations (S.5) and (S.6) give640
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The height change of the blister is balanced by the radial gradient of fluid flux not only in the blister but641

also the porous layer. Assuming axisymmetry, it is convenient to integrate the blister mass conservation642

equation (S.5) radially643 ∫ R
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rw0dr = 0 (S.8)

Since the volume of the blister is V (t) = 2π
∫ R

0
rhdr, and no fluid is injected during relaxation so that644

rūh|0 = 0, the above equation gives the global mass conservation law for the blister645

dV

dt
−
∫ R

0

2πrw0dr = 0, (S.9)

where the first term is the rate of blister volume reduction and the second term is the total flux of liquid646

leaking from the blister into the porous substrate ahead of the blister. Similarly, integrating the mass balance647

equation (S.6) in the porous layer radially and applying ruph0|0 = 0 (no fluid is injected during relaxation),648

we obtain649

rφuph0|R +

∫ R

0

rw0dr = 0. (S.10)

Ahead of the blister (r > R), w0 = 0 since there is no vertical fluid flux. Thus ∂(rφuph0)/∂r = 0, i.e.,650

the horizontal flux rφuph0 is constant along r. Thus651

rφuph0|r = Rφuph0|R . (S.11)

Combining equations (S.9, S.10, S.11), we obtain the global mass conservation in the porous layer for652

r > R653

dV

dt
= −2πrφuph0, when r > R (porous layer). (S.12)



1.2 Force Balance654

During the formation of the water-filled blister at the ice-bed interface, the deformation of ice imposes elastic655

stresses on the blister. As water in the blister leaks into the porous substrate, the elastic stresses relax.656

While the elastic stresses act as a driving force for the blister relaxation, the viscous stresses in the fluid flow657

(along the r direction) resist the relaxation. We now give an approximate description of the time-dependent658

relaxation. The pressure source in the system, i.e. the elastic driving stresses P (t), is reduced along the659

the flow due to the radial pressure gradient ∂p/∂r < 0 that drives the viscous flow in the porous substrate,660

and eventually reaches the background pressure. The background pressure (the overburden pressure of ice)661

is assumed constant with space and time around the blister, thus does not affect the relaxation dynamics662

(see Supplementary Information Section 2). Assuming the viscous resistance in the blister is negligibly small663

compared with the viscous resistance in the porous layer (see Supplementary Information Section 1.5), the664

time-dependent dynamics can be thus modeled as665

P (t) +

∫ Rp(t)
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dr = 0, (S.13)

where Rp(t) is the position of the advancing front of the liquid in the porous substrate. For convenience,666

we introduce a characteristic height scale H(t) = h(r = 0, t) and use the fixed blister radius R as the radial667

length scale so that668

r = Rs, and h(r, t) = H(t)Ω(s), (S.14)

where s and Ω(s) are dimensionless. Note that here we assume the dimensionless cavity shape Ω(s) is669

independent of time, i.e., the relaxation dynamics is self-similar [4]. The total volume of the blister can be670

written as671

V (t) = 2π

∫ R

0

rh(r, t)dr = 2πH(t)R2α, where α ≡
∫ 1

0

sΩ(s)ds (S.15)

is a time-independent dimensionless parameter. The exact elastic stress distribution p(r, t) around the blister672

is a function of the shape of the cavity h(r, t) (equation (2.1) in [7]). To compare the model with experimental673

and field data, we will derive the solution for the blister volume V (t) as a function of time.674

For small elastic strains, H/R� 1, the elastic stresses, analogous to Hooke’s law, scale linearly with the675

vertical displacement P (t) ∝ H(t). Here, using equation (2.1) in [7] and (S.15), we approximate the elastic676

stress with the time-dependent pressure677
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. (S.16)

1.2.1 Porous substrate678

Fluid flow through a porous medium obeys Darcy’s law, where the (radial) fluid flux q (volume per unit679

time per unit area crossing the flow) is linearly proportional to the pressure gradient ∂p/∂r. In glaciology680

the same approach was used by Weertman to describe the water flow through a porous rock with a uniform681

permeable layer thickness below the ice sheet [9]. Note that the fluid flux q is related to the fluid velocity up682

in a porous medium with porosity φ (volume of pores normalized by total volume) via q = φup, since fluid683

flux is only contributed by the flow in the pores. For a fluid with viscosity µ and permeability k, Darcy’s684

law gives685
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k
up. (porous layer) (S.17)

Integrating equation (S.17) and using equation (S.12), we obtain686 ∫ Rp(t)
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Since the total water volume Vtot is a combination of water in the blister and the porous substrate, Vtot =687

V (t) + φπh0Rp(t)
2. Thus688
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R
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. (S.19)

Equations (S.18) and (S.19) give the pressure drop along the flow in the porous layer as a function of V (t)689 ∫ Rp(t)
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Finally, substituting equations (S.16) and (S.20) into (S.13), we obtain a first-order ordinary differential690

equation that governs the time evolution of the blister volume V (t),691
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)
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= 0, (S.21)

with an initial blister volume V (t = 0) = Vi. The second term in the above equation result from the viscous692

dissipation in the porous substrate, respectively. The first term represents the driving force of the system,693

the elastic stresses.694



Supplementary Figure 1: Model solutions. The dimensionless blister volume V as a function of dimen-
sionless time τ , defined in equation (S.22). The analytical exponential solutions (equation (S.27), red dashed
curves) approximate the numerical solutions (black solid curves) of the full non-linear ODE (equation (S.23))
for a range of B, C (defined in equation (S.24)) and the corresponding f (defined in equation (S.26)).

1.3 Non-dimensionalization695

For convenience, we define the dimensionless volume and time as696

V ≡ V

Vi
with τ ≡ t Ekh0

µ(1− ν2)R3
, (S.22)

so that equation (S.21) can be non-dimensionalized697

V + αln

(
B − V
C

)
dV
dτ

= 0, I.C. V(0) = 1, (S.23)

698

where B ≡ Vtot
Vi

and C ≡ φπh0R
2

Vi
. (S.24)

Although V (t) depends on nine parameters E, ν, µ,R, h0, k, φ, Vi, Vtot (equation (S.21)), we found that the699

behaviour of the dimensionless volume V as a function of dimensionless time τ depends on two dimensionless700

parameters B and C. B is the ratio between total water volume injected into the system and initial blister701

volume and C is the ratio between water volume just beneath the blister and the initial blister volume.702

Based on field data B ≈ 1.14 (based on the initial blister volume V0 and lake volume Vtot estimated for the703

2012 North lake drainage event [8]), and C = 0.04− 0.11 (Supplementary Table 3). The numerical solutions704

to equation (S.23) for a range of B,C are plotted in Supplementary Fig. 1 as black curves.705

1.4 Analytical solution706

Since ln
(
B−V
C

)
varies slowly with V, it can be approximated with a time-independent constant ln

(
B−γ
C

)
,707

where γ is a numerical constant to be determined below. Equation (S.23) can be approximated with a linear708

ODE709

V + f
dV
dτ

= 0, with V(0) = 1, (S.25)

710

where f ≡ αln

(
B − γ
C

)
(S.26)

and yields an exponential solution for V711

V = exp

(
− τ
f

)
. (S.27)

To find the value of γ so that equation (S.25) approaches (S.23), we choose γ to be V averaged over a time712

scale of f , i.e., γ = f−1
∫ f

0
Vdτ =

∫ f
0

exp(−τ/f)dτ = (e− 1)/e ≈ 0.63. Supplementary Fig. 1 shows that the713

exponential solution (red dashed curve, equation (S.27)) is a good approximation to the numerical solution714

(black solid lines) to the non-linear ODE (equation (S.23)).715

To compare with the field data, we also obtain a solution for the blister height h(r, t). The height of716

the blister at any location directly relates to the dimensionless volume. Since the blister radius remains717

unchanged during relaxation, the volume change results from a change in height. The blister height h(r, t)718

relates to its initial value h(r, t = 0) via the formula719
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=
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0
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=
2πα′(r)R2h(r, t)

2πα′(r)R2h(r, t = 0)
=

h(r, t)

h(r, t = 0)
= H, (S.28)

where α′(r) ≡ αH(t)/h(r, t) is related to the self-similar shape of the blister and so is independent of time720

and space. Therefore the height of the blister, measured at a given location, rescaled by its initial value H,721

also has an exponential response722

H = exp

(
− τ
f

)
, (S.29)



which is directly compared with field data in Fig. 3 in the main text. The numerical pre-factor f can723

be calculated for each field data set using B, C, and α ≈ 0.32 (found experimentally from fitting the724

experimental data to equation (S.27)). We estimate that for the nine observational data sets presented in725

Fig. 3 in the main text f ≈ 0.5 − 0.8 = O(1) (Supplementary Table 3), which is remarkably close to the726

experimental value f ≈ 0.6− 0.7. The effect of such range of f on the solution (equation (S.27)) is shown in727

Supplementary Fig. 1.728

All relevant parameters used in this paper (dimensionless and dimensional) for both the experimental729

system and field observations are listed in Supplementary Table 3.730

1.5 Viscous dissipation in the blister731

In this section we show the negligible viscous dissipation in the blister compared with that in the porous732

sheet. Below We calculate the viscous pressure drop along the flow in the blister ∆pvb =
∫ R

0
∂p/∂rdr and733

compare it with the viscous pressure drop in the porous sheet ∆pvp =
∫ Rp

R
∂p/∂rdr (equation (S.20)).734

In the limit where viscous effects are important relative to inertial effects, i.e. a representative Reynolds735

number Reeff = ρūH2/(µR)� 1, the flow in the blister is laminar. We solved the Stokes equation ∂p/∂r =736

µ∂2u/∂z2 (neglecting the r-derivatives terms since z � r) with boundary conditions u(z = h) = 0 and737

u(z = 0) = φup, and obtain a variant of Darcy’s law,738
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ū, where S` ≡

(
1

12
+
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2h2

)
, (blister) (S.30)

where S` is a slip factor that couples the effect of non-zero velocity at the interface between the blister and739

porous layer. Equations (S.7), (S.17), and (S.30) give740

∂h

∂t
− 1

r

∂

∂r

(
r

µ
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)
= 0, when r < R (S.31)

Rearranging equation (S.31), we obtain741

∂p

∂r
=

µ
r

∫ r
0
∂h
∂t r
′dr′

h3S` + h0k
(S.32)

The integrated pressure drop along the flow in the blister, considering the velocity slipping against the porous742

layer, is thus743 ∫ R

0

∂p

∂r
dr =

∫ R

0

µ
r

∫ r
0
r′ ∂h∂t dr

′

h3/12 + hk/2 + h0k
dr, for r < R (S.33)

To rewrite the pressure drop in terms of V (t), we substitute equations (S.14) and (S.15) into (S.33) to find744 ∫ R

0
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µR2

H3

dH
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∫ 1

0

s−1
∫ s

0
Ω(s)s′ds′

Ω(s)3/12 + Ω(s)k/(2H2) + h0k/H3
ds =

4π2α2µR6

V 3

dV
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β. (S.34)

where β ≡
∫ 1

0

s−1
∫ s

0
Ω(s)s′ds′

Ω(s)3/12 + Ω(s)k/(2H2) + h0k/H3
ds (S.35)

is a dimensionless parameter. Although H(t) is time-dependent, the typical transmissivity kh0 ≈ O(1) −745

O(102) mm3 (Fig. 3 in the main text), porous layer thickness h0 ≈ 0.1 m, and blister height H ≈ 1 m give746

k/H2 � 1, h0k/H
3 � 1. Thus β can be approximated as β ≈

∫ 1

0

s−1
∫ s
0

Ω(s)s′ds′

Ω(s)3/12 ds, which is independent of747

time.748

Combining equations (S.20) and (S.34), the viscous dissipation in the blister compared with that in the749

porous sheet can be quantified by a dimensionless parameter750

A ≡ ∆pvb
∆pvp

=

∫ R
0
∂p/∂rdr∫ Rp

R
∂p/∂rdr

≈ 16π3R6kh0

V 3
i

.

Based on field data A = 0.01 − 0.19 (Supplementary Table 3), thus the viscous resistance in the blister is751

negligible compared to that in the porous sheet. The dominant viscous resistance in the porous sheet (A� 1)752

yields a simple balance between the V and dV/dτ terms in equation (S.25), resulting in an exponential753

solution (equation (S.27)). In our experiments, we design the parameters so that A ≈ 0.001 − 0.002 � 1754

(Supplementary Table 3) and we find that the experiments agree with the exponential solution (Fig. 2d in755

the main text).756

1.6 Pre-filled porous substrate757

If water fully fills the subglacial drainage system prior to the blister relaxation, the water in the blister758

could enter the water-filled porous sheet by deforming the pores (Section 4.5 in Hewitt et al. (2018) [2]).759

Alternatively, if we assume that the water pressure in the drainage system at a radial distance Ro away from760

the blister center is unperturbed by the formation and relaxation of blister and within r < R0 the drainage761

system is fully filled with water, the blister height still obeys H = exp(− τf ) (equation (S.29)) where the762

numerical pre-factor is defined as f ≡ αln(R0/R)2. In reality R0 could be determined by the location of763

partially empty channels and sheets [3] where the subglacial drainage system is “under-pressured” [3] due to764

the exposure of subglacial water pressure to atmospheric pressure; this is similar to the empty part of the765

porous substrate in our experiments. Note that when R0 changes from 10 to 50 km f only increases from766

1 to 2, which is of the same order of magnitude as the value calculated for the model with a partially filled767

porous sheet (f ≈ 0.5− 0.8 (Supplementary Table 3)). Thus the inferred transmissivity kh0 for a pre-filled768

drainage system is of the same order of magnitude as that for a partially filled porous sheet.769



Supplementary Figure 2: A blister on a inclined bed. (a) Schematic of a blister of radius R and
characteristic height H under an ice sheet of thickness d on a bed with spatially varying bed elevation b and
characteristic slope θ. The characteristic thickness of the drainage system is h0. Dashed lines denote the ice
surface and bottom after the ice-sheet relaxation. (b) The bed topography near the North Lake inferred by
Morlighem et al. (2014) [6]. The triangles, black curve, and red contour are the GPS stations, a vertical
hydrofracture through which the lake drains, and the 2011 Lake contour, respectively. The largest bed slope,
θ ≈ 0.04, aligns with the white arrow.

2 Effects of bed slope, ice overburden, and hydrostatic pressure770

on blister relaxation771

The blister model in this paper assumes that (1) bed slope, (2) ice overburden pressure, and (3) hydrostatic772

pressure of water in the blister have negligible effects on the ice-sheet relaxation dynamics. In this section773

we estimate these effects. On an inclined bed with elevation b, the water flux q in the subglacial water sheet774

as a function of the hydraulic potential φ is775

q = −k
µ
∇φ. (S.37)

The hydraulic potential involves a bed elevation-related contribution ρwgb and the water pressure p in the776

water sheet777

φ = ρwgb+ p and p = ρigd+ ρwgh+ ∆pe, (S.38)

where ρi and ρw are the density of ice and water, respectively, d is the ice-sheet thickness, h is the blister778

height, and ∆pe is the the third term in the water pressure that balances the elastic stresses of the deformed779

ice sheet due to the blister. The horizontal hydraulic potential gradient in equation (S.37) can be written as780

∇φ = ρwg∇b+ ρig∇d+ ρwg∇h+∇(∆pe) (S.39)

Below we estimate the magnitude of each term in equation (S.39) and find that the elastic-stress term781

dominates. For a blister (height H ≈ 1 m and radius R ≈ 2 km) under an ice sheet (Young’s modulus E ≈ 10782

GPa), the gradient of elastic stresses is ∇(∆pe) ≈ EH/R2 ≈ 2500 Pa/m. The bed slope beneath and around783

the blister is roughly θ ≈ 0.04. The bed-elevation related term in equation (S.39) is ρwg∇b ≈ ρwgθ ≈ 400784

Pa/m � ∇(∆pe), which is small compared with the elastic term.785

In addition, the ice overburden pressure is negligible due to the small variation of ice-sheet thickness d786

over the blister length scale ρig∇d� ∇(∆pe). The contribution of the hydrostatic pressure due to the water787

height in the blister is ρwg∇h ≈ ρwgH/R ≈ 5 Pa/m � ∇(∆pe), and also is also negligibly small. Thus788

(1) bed elevation, along with (2) overburden pressure of ice, and (3) the hydrostatic pressure in the blister789

contribute little to the hydraulic potential gradient (equation (S.39)) when a blister is considered, and have790

small effects on the water flux q compared with the blister-induced elastic stress. For simplicity we neglect791

these effects in the blister relaxation model (Supplementary Information Section 1). Note that the bed slope792

needs to be as large as θ > EH/(R2ρwg) ≈ 0.25 to have a non-negligible effect on blister relaxation.793

Therefore in this paper the water flux in the water sheet is approximately q = −k/µ∇p, where the water794

pressure in the blister is of the same order of magnitude as the elastic stress p = O(EH/R), which is the795

dominant driving stress for the water flow. Note that when the elastic stress has mostly relaxed and the796

blister thickness is much less than H < ρwgθR
2/E ≈ 16 cm, the bed topography becomes the dominant797

mechanism to drive the subglacial flow.798

3 Viscous effects of ice799

The blister model assumes that ice is elastic. In this section we estimate the effect of viscous flow in ice800

sheets on the relaxation of a blister. We consider an extreme case where ice is purely viscous and estimate801

the surface elevation change hvisc compared with that resulting from a pure elastic ice helast.802



Supplementary Figure 3: Blister under a purely viscous ice sheet. (a) A water-filled blister. The
dashed lines mark the relaxed positions of the top and bottom of the ice sheet. (b) The decrease of surface
elevation between the beginning of blister relaxation (dashed line, same as the solid line in (a)) and a certain
time ∆t afterwards (solid line) is a combination of the thinning of blister height ∆hvisc and the thinning of
ice sheet thickness ∆d by ice flowing (gray arrows) with varying velocity U(x).

3.1 Viscous ice sheet803

When a viscous ice layer is on top of a water-filled blister, the lowering of the vertical surface elevation could804

result from the (1) thinning of ice-sheet thickness ∆d and the (2) thinning of the blister thickness ∆hvisc805

(Supplementary Fig. 3). Below we estimate both contributions.806

3.1.1 Ice-sheet thinning807

When a viscous layer of ice is on top of a water-filled blister, the cross-sectional velocity is uniform U808

(Supplementary Fig. 3b) due to the free-slip top and bottom boundary conditions. Due to mass conservation809

the thinning of ice-sheet thickness depends on the horizontal gradient of vertical flux ∂d/∂t+∂/∂x(Ud) = 0.810

Note that where ice sits on top of the drainage water sheet the shear stress at the ice-bed interface can be811

nonzero depending on the characteristics of the ice-bed contact. Here we only consider a case with zero812

shear stress at the bed, which overestimates the ice thinning ∆d. The inclined ice-water interface z = h and813

non-uniform ice thickness d contribute to the hydraulic potential gradient ∇(ρigh + ρigd) driving the ice814

flow. Note that initially ∇d ≈ ∇h so the total hydraulic potential gradient is on the same order of magnitude815

as ρig∇h. Resistance in the ice flow comes from the horizontal gradient of the deviatoric stress τxx, where816

x is the along-flow direction. The balance of the driving and resisting mechanism gives τxx/R ≈ ρigH/R.817

The rheology of ice is given by Glen’s flow law [1] τxx ≈ B ˙εxx
1/n ≈ B(U/R)1/n where n ≈ 3 and B is818

temperature-dependent. Thus U ≈ (ρigH/B)nd. Along with mass conservation, we obtain the rate of ice819

thinning scales as820

∆d

∆t
≈ Ud

R
≈
(
ρigH

B

)n
d. (S.40)

We find that for a typical range of the viscosity factor B ≈ 2.7 × 105 ∼ 106 Pa·year1/3 (at ice temperature821

T = −30 ∼ −5◦C) [5], H ≈ 1 m and d ≈ 1 km, so that after ∆t = 10 days the ice only thins ∆d ≈ 0.02− 1822

mm.823

3.1.2 Blister thinning824

The driving force that causes the thinning of the blister ∆hvisc (Supplementary Fig. 3b) is the gradient of825

hydrostatic pressure in the blister ρwg∇h, because there are now no elastic stresses in the ice sheet. The826

resisting mechanism for relaxation of the surface elevation is thus the viscous dissipation of water flux q in the827

water sheet of thickness h0 and effective permeability k. A balance between the driving hydrostatic pressure828

and resisting viscous dissipation along the water flux is ρwgH ≈ µqR/k. The rate of blister volume reduction829

supplies the water flux in the water sheet, i.e., ∆V/∆t ≈ qh0R. Here we drop the O(1) pre-factors (e.g. π).830

The decrease in vertical blister height scales with a decrease in volume as ∆hviscR
2 ≈ ∆V . Therefore the831

rate of blister thinning under a viscous ice sheet scales as832

∆hvisc
∆t

≈ ρwgHkh0

R2µ
. (S.41)

We find that for water viscosity µ ≈ 1 mPa·s, sheet transmissivity kh0 ≈ 1 mm3, and the typical values of833

H,R used above, after ∆t = 10 days the blister thins ∆hvisc ≈ 2 mm.834

3.2 Elastic ice sheet835

On the other hand, in the original blister model ice is considered elastic and the relaxation driving force is the836

elastic stress cause by the ice-sheet deformation. The driving elastic stress and resisting viscous dissipation837

along the water flux give EH/R ≈ µqR/k. In the same way as for viscous ice, the volume conservation of838

water gives ∆V/∆t ≈ qh0R and ∆helastR
2 ≈ ∆V . The rate of decrease in blister height due to the elastic839

relaxation of ice sheet is thus840

∆helast
∆t

≈ EHkh0

R3µ
. (S.42)



3.3 Comparison841

Comparing equations (S.40), (S.41), and (S.42), we find that within a given time period ∆t and the typical842

parameter values of E,R,H, kh0, d, µ,B used above, the vertical blister height change under a purely elastic843

ice sheet is much larger than the vertical surface elevation change under a purely viscous ice sheet.844

∆helast
∆hvisc

≈ E

ρwgR
≈ 103,

∆helast
∆d

≈ EHkh0

R3µd

(
B

ρigH

)n
≈ 103 − 105. (S.43)

Thus, the reduction of blister height is dominantly contributed by the elastic relaxation of ice rather than845

the viscous ice flow.846
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Supplementary Figure 4: GPS uplift data processing. The relative vertical displacement 

data from individual GPS stations for 5 drainage events (a-e) and the detrended data (f-j). The 

background variation of vertical displacement in time 𝑡 due to ice-sheet movement is linearly 

fit to 𝑦 = 𝑎𝑡 + 𝑏 (black lines) before and after the uplift peak. The background linear trend is 

then subtracted from the GPS data to yield the detrended vertical displacements (f-j). Details 

of the time range used for linear curve fitting are in Methods. The relaxation time 𝑡𝑟𝑒𝑙 (vertical 

axis in Fig. 3a) is obtained by fitting an exponential curve to the detrended vertical 



displacements ℎ(𝑡). The 9 detrended vertical displacements are used in Fig. 3b-c. 
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 868 

Supplementary Figure 5: South Lake in 2009. (a) Landsat 7 image of South Lake on July 

15, 2009, five days before rapid drainage. Red line marks lake margin. SLSS GPS station 

shown with black triangle. (b) 30-m resolution MEaSUREs Greenland Ice Mapping Project 

(GIMP) Digital Elevation Model (DEM) from GeoEye and WorldView Imagery, Version 1 

(36, 37) for South Lake region. Solid Black contour shows 1050.5 m a.s.l., with dashed 

contours showing 1050.5±1𝜎 = 1050.5±1.27 m a.s.l. (c) Lake depth relative to 1050.5 m a.s.l. 

lake shoreline. 
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https://paperpile.com/c/AzrI9Y/FaJdQ+9h5U8
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Supplementary Figure 6: Vertical and along-flow displacement during North and South 

Lake drainages. For all panels, station (red) vertical displacement and (blue) along-flow 

displacement for an individual GPS station are shown. Dashed black line shows a linear fit to 

pre-drainage along-flow displacement, with along-flow velocity (slope) noted in the text on 

panel. Grey vertical bars indicate time of drainage and time of along-flow displacement 

attaining the value predicted by pre-drainage along-flow velocities, with the duration between 

these time points in days noted in the text on panel. North Lake drainages for (a) 2006, (c) 

2011, and (d) 2012 are shown. South Lake drainage for (b) 2009 is shown. The relationship 



between vertical displacement and along-flow velocity around a moulin has been reported in 

(39). 

 

 871 

Supplementary Figure 7: Comparison of different models for blister height. (a) Our model 872 

predicts an exponential decrease of blister height with time (equation (7)). The exponential decay 873 

of blister height ℎ(𝑡) = ℎ𝑖𝑒𝑥𝑝(−𝑡/𝑡𝑟𝑒𝑙) fitted to all GPS data as a function of time is shown by the 874 

solid black curves. The fitted 𝑡𝑟𝑒𝑙 is used to calculate the hydraulic transmissivity (Fig. 3a). The 875 

color of each set of uplift data is the same as in Fig. 3. (b) Comparison of the GPS data with a 876 

power-law (black line) with exponent -2/11 (14). 877 

 878 

 879 
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 881 

 882 

 883 
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https://paperpile.com/c/AzrI9Y/QqEC


Lake name Lake GPS location Lake drainage date 

North Lake 68.72˚ N, 49.50˚ W July 29, 2006 

June 18, 2011 

June 9, 2012 

South Lake  68.57˚ N, 49.37˚ W July 20, 2009 

Lake F 67.01˚ N, 48.74˚ W June 30, 2010 
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Supplementary Table 1: Locations and dates of the lake drainage events.  

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 
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Station Year 𝑽𝒕𝒐𝒕 (km) 𝒉𝒎𝒂𝒙 (m) 𝑹 (km) 𝒌𝒉𝟎  (mm3) 

NLBS 2006 ±0.010 ±0.16 ±0.4 ±91.4 

SLSS 2009 ±0.010 ±0.13 ±0.5 ±55.8 

NE 2010 ±0.027 ±0.09 ±0.2 ±14.4 

NW 2010 ±0.027 ±0.09 ±0.2 ±15.0 

NL09 2011 ±0.001 N/A ±0.1 ±0.5 

NL08 2011 ±0.001 N/A ±0.1 ±0.3 

NL09 2012 ±0.001 N/A ±0.1 ±2.4 

NL08 2012 ±0.001 N/A ±0.1 ±2.2 

NL07 2012 ±0.001 N/A ±0.1 ±1.8 

 

Supplementary Table 2: Parameter uncertainties. Error bars for parameters listed in Fig. 3: 

lake volume 𝑉𝑡𝑜𝑡, maximum initial blister height ℎ𝑚𝑎𝑥, blister radius 𝑅, and transmissivity 

𝑘ℎ0. The lake volume error bars for the 2009 drainage event are estimated in Methods and for 

other years are taken from literature (2, 4, 6). The errors associated with ℎ𝑚𝑎𝑥 , 𝑅, 𝑘ℎ0 are 

propagated from the lake volume error, as detailed in Methods.   
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https://paperpile.com/c/AzrI9Y/ILkSQ+65o97+Rm8Kt
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Supplementary Table 3: Parameters and their definitions used in this study. Although the 

dimensional governing equation (equation (S.21)) depends on nine dimensional parameters 

(𝜙, ℎ0, 𝑘, 𝐸, 𝜈, 𝜇, 𝑉𝑡𝑜𝑡, 𝑉𝑖, 𝑅), its dimensionless form (equation (29)) only depends on two 

dimensionless parameters (𝐵, 𝐶). We designed the experimental parameters so that the 



dimensionless parameters (𝐵, 𝐶) of the experiments match that of the field data, meaning 

experiments fall into the same physical regimes as the field observations. Derivations of the 

governing equation and the non-dimensionalization are detailed in Supporting Information. 

Numerical factor 𝛼 ≈ 0.32 was found empirically by fitting all experimental data to equation 

(2). When calculating 𝐶 we assumed the thickness of the water sheet ℎ0 is on the order of 0.1 

meters (11). 
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https://paperpile.com/c/AzrI9Y/ckqMi

