

1 **Supplementary Information**

2 **Supplementary Text**

3 **Isotopic context**

4 Marine $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values of particulate organic matter (POM), the base of the marine food web, vary
5 across oceanic basins^{5,24,25}. Marine phytoplankton from high latitudes shows a particularly high variability
6 in $\delta^{13}\text{C}$ values⁷⁷. Colder surface water temperatures lead to increasing aqueous CO_2 content, and therefore
7 a net transfer of isotopically light CO_2 to the ocean and a depletion of ^{13}C in the surface water⁷⁸. Other
8 factors influencing spatial POM $\delta^{13}\text{C}$ values include phytoplankton growth rates, cell size and cell lipid
9 content (see ref.^{5,77} and ref. therein). Additional spatial variability may arise from the relative contribution
10 of sea ice POM and pelagic POM to a food web. Coeval open water phytoplankton (pelagic-POM) and
11 algae from beneath the sea ice (sympagic-POM) have differing $\delta^{13}\text{C}$ values with the former being ^{13}C
12 depleted relative to the latter by 2-10 %^{52,79,80,81}. Subtle shifts in Arctic consumers' $\delta^{13}\text{C}$ values for a
13 specific area over time may occur with large-scale shifts in the relative importance of sympagic versus
14 pelagic production related to changes in sea ice extent^{4,43}.

15 A high variability in modern baseline $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values is documented by the isotopic composition of
16 POM, zooplankton, higher trophic level consumers, as well as filter feeders across the Arctic^{6,27,28,29,30,31,32}.
17 Pomerleau *et al.*³⁰ documented a significant spatial variability in zooplankton $\delta^{15}\text{N}$ values between the
18 Labrador Sea, Baffin Bay and the Canadian Arctic Archipelago (CAA), but not $\delta^{13}\text{C}$ between these areas.
19 Subsequent studies documented a higher variability for $\delta^{13}\text{C}$ of POM, zooplankton and high trophic level
20 consumers between and within these areas as well^{31,32}. Additionally, a pronounced west-east ^{13}C
21 depletion was observed throughout consumers from the Bering Sea (Bering Strait) through the Chukchi
22 Sea to the Beaufort Sea^{6,27,28,31}. A similar west-east trend was also found for sedimentary organic carbon
23 accumulated along the Beaufort Shelf⁷⁷. This eastward ^{13}C depletion trend reaches its maximum in the
24 south-eastern Beaufort Sea. Terrestrial organic matter derived from the Mackenzie River has $\delta^{13}\text{C}$ values
25 of \sim 26 to \sim 27 % and dominates over autochthonous organic matter in the delta and at least parts of the
26 Beaufort shelf⁸². Terrigenous ^{13}C depleted carbon is also thought to play an important role for some
27 animals (gammarid amphipods) of the Mackenzie shelf's food web⁸³. A similar variability in $\delta^{15}\text{N}$ values
28 between the Bering Sea, Chukchi Sea and Beaufort Sea is absent within animals of higher trophic levels^{6,55}.
29 However, geographic variations in $\delta^{15}\text{N}$ values within these water bodies were observed for different
30 zooplankton species^{6,28,31}. Parson *et al.*⁸³ explained high $\delta^{15}\text{N}$ in POM of the Mackenzie estuary instead of
31 a low terrigenous signal as a potential bacterial recycling of nitrogen.

32 The eastward decrease of baseline $\delta^{13}\text{C}$ values does not seem to continue into the CAA^{30,80}, but
33 significantly lower $\delta^{13}\text{C}$ values have been reported in consumer tissues close to the Canadian mainland
34 and in semi-enclosed basins⁵⁶. In accordance, De La Vega *et al.*³² observed higher baseline $\delta^{13}\text{C}$ values in
35 inflow shelves connected to the Atlantic or Pacific Oceans (Barents Sea, Chukchi Sea) and the North Water
36 Polynya (Northern Baffin Bay) compared to lower baseline values in the more freshwater influenced Arctic
37 shelves (Beaufort Sea, CAA, Hudson Bay). Lower baseline values for carbon in the more terrestrial
38 influenced areas are likely a result of terrigenous input and lower phytoplankton productivity. Higher
39 stratification caused by inflowing freshwater hampers phytoplankton productivity on the interior
40 shelves⁸⁴. Indeed, Bering and Chukchi Sea annual primary production rates greatly exceed those of the
41 Beaufort Sea⁶.

42 Zn isotopes are increasingly being used as tracers for past marine hydrochemistry^{85,86} and culture
43 experiments have investigated Zn isotope fractionation in different planktonic species^{38,39}. Still, there is
44 hardly any data on the Zn isotopic composition of natural marine planktonic organisms^{87,88}. Together with
45 iron, Zn is the most abundant trace element in marine phytoplankton biomass⁸⁹. Because of biological
46 uptake, most oceans show a nutrient-like vertical distribution of dissolved zinc concentrations closely
47 correlating with silicate concentrations⁴⁰. The isotopic composition of dissolved Zn below 500 m seems to
48 be globally homogenous with values close to +0.5 ‰, despite variable Zn concentrations^{35,36}. Atlantic and
49 Pacific vertical Zn isotope profiles generally show lower $\delta^{66}\text{Zn}$ values in surficial waters compared to that
50 of the deep water^{33,36,40,41,42}. Surface water dissolved zinc isotope ratios vary across a North Atlantic
51 transect from -1.1 to +0.9 ‰³³ and across a North Pacific transect between -0.9 and +0.2 ‰⁴². Individual
52 and combined mechanisms discussed to be responsible for this surface water $\delta^{66}\text{Zn}$ variability include
53 external inputs from rivers and aerosols^{37,42}, scavenging of heavy Zn onto sinking organic matter⁴⁰ and
54 biological uptake and shallow remineralisation⁹⁰. We are unaware of any $\delta^{66}\text{Zn}$ data from dissolved Zn in
55 the Arctic. However, a recent study on Western Arctic dissolved Zn concentrations highlighted a deviation
56 of Zn concentration vertical profiles from the nutrient-type Zn profiles observed in the Atlantic and
57 Pacific⁹¹. These authors documented higher than global average surface Zn concentrations (~1.1 nmol kg⁻¹)
58 with a maximum concentration at 200 m and uniformly lower concentrations in the deep water. Jensen
59 et al.⁹¹ hypothesises that Western Arctic surface water dissolved Zn originates primarily from incoming
60 Pacific waters that are modified by shelf sediment fluxes from remineralised Zn-rich phytoplankton.

61 ***P. hispida* and *U. maritimus* diet**

62 *P. hispida* is not a highly specialised feeder and its diet can vary seasonally and geographically, and includes
63 teleosts, amphipods and other crustaceans and cephalopods^{45,55,92}. Its main food source is Arctic cod
64 (*Boreogadus saida*) and other gadids for most Arctic regions^{54,92,93}. Based on stomach content analysis,
65 perfluoroalkyl compounds (PFCs), $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ tissue values across the Arctic, the diet of different *P.*
66 *hispida* populations is known to vary locally and seasonally to some degree^{53,56,92}. Still, modern *P. hispida*
67 populations are thought to inhabit the same trophic level across the Arctic⁵⁶.

68 *P. hispida* is the main food source for *U. maritimus* in the Arctic. However, modern polar bears are not a
69 single cosmopolitan population⁶² and the contribution of *P. hispida* to a bear's diet relative to other prey
70 species (e.g., *Erignathus barbatus*, *Pagophilus groenlandicus*, *Phoca vitulina*, *Odobenus rosmarus*,
71 *Delphinapterus leucas*) varies within different populations^{60,61}. Additionally, *U. maritimus* may also
72 scavenge the remains of larger whale species when available⁹⁴. A contribution of terrestrial food to *U.*
73 *maritimus* diet is negligible⁷.

74 **Archaeological context**

75 The materials analysed are derived primarily from occupations associated with the Thule Inuit, with a few
76 exceptions. All sites have been dated by AMS ^{14}C as outlined in Supplementary Table 3 in which references
77 are provided for publications providing additional details about these sites. For simplicity, when analysing
78 geographic variability, the following sites were grouped together as a single location: OkRn-1 with OIRr-1,
79 KTZ-304 with KTZ-087, PaJs-13 with Pcjq-5 and PeJr-1.

80

81

82 **Supplementary Methods**

83 **Mineral dissolution experiment**

84 Bone samples and reference materials NIST SRM 1400 and NIST SRM 1486 were subjected to different
85 dissolution methods to investigate the impact of the organic bone phases on its Zn isotope signal
86 (Supplementary Figure 1). For that purpose, we resampled 26 *P. hispida* bones to measure $\delta^{66}\text{Zn}$ of the
87 bulk bone, the mineral phase and the collagen phase of the same bone material. The column
88 chromatography steps (3.1.2) for a quantitative recovery of sample Zn were the same for all samples
89 regardless of the dissolution methods used.

90 **Method 1: Mineral phase dissolution only**

91 Samples were transferred into acid-cleaned 2 ml polypropylene microcentrifuge tubes and demineralised
92 in 1 ml 1M hydrochloric acid (HCl) at room temperature. After two days of digestion, the demineralisation
93 progress was checked with a glass pipette. If the samples were still hard, the solution was extracted after
94 centrifugation, and another 1 ml HCl added to the residue containing tube. After another two days, the
95 samples were checked again. For all samples, the collagen residue was soft and spongy no later than after
96 four days, indicating complete demineralisation. The tubes were then centrifuged and the solution
97 (dissolved mineral phase) was extracted for Zn isotope analyses. The remaining insoluble collagen was
98 also collected (with 1 ml ultrapure water added). The dissolved mineral phase was evaporated in open
99 (Savillex) perfluoroalkoxy (PFA) vials on a hotplate for 5 h at 120 °C, then re-dissolved in 1 ml hydrobromic
100 acid (HBr, 1.5 M) and subsequently placed in an ultrasonic bath for 30 min.

101 Collagen samples for $\delta^{66}\text{Zn}$ analyses were rinsed with ultrapure water, centrifuged, and rinsed again.
102 Samples were then dried down and dissolved with 1 ml ultrapure (65 %) concentrated nitric acid (HNO₃)
103 for 1 h at room temperature followed by 1 h in a closed vial on the hotplate at 120 °C. Finally, samples
104 were dried down for 5 h at 120 °C and re-dissolved in 1 ml 1.5M HBr and ultrasonicated for 30 min.

105 **Method 2: Bone dissolution following enamel dissolution protocol**

106 Bone samples were dissolved following an established protocol primarily applied to enamel samples^{11,14}.
107 Samples were dissolved in closed PFA vials with 1 ml 1M HCl on a hotplate for 3 h at 120 °C and then
108 evaporated at 120 °C. The residue was then dissolved in 1 ml 1.5M HBr and placed in an ultrasonic bath
109 for 30 min.

110 **Method 3: Bulk bone dissolution**

111 Bone samples were dissolved with 1 ml ultrapure (65 %) concentrated HNO₃ for 1 h at room temperature
112 in an open PFA vial, followed by 1 h in a closed vial, on a hotplate, at 120 °C. Samples were then dried
113 down at 120 °C, re-dissolved in 1 ml 1.5 M HBr, and ultrasonicated for 30 min.

114 **Stable Carbon and Nitrogen Isotope Analyses**

115 Carbon and nitrogen isotopic and elemental compositions were determined using an IsoPrime continuous
116 flow isotope-ratio mass spectrometer (CF-IRMS) coupled to a Vario Micro elemental analyser (Elementar,
117 Hanau, Germany) at the University of British Columbia. Sample measurements were calibrated relative to

118 VPDB ($\delta^{13}\text{C}$) and AIR ($\delta^{15}\text{N}$) using USGS40 and USGS41⁷⁴. The standard deviations and number of
119 calibration (quality control) standards used in all of the analytical sessions are listed in Supplementary
120 Table 4.

121 Standards used to monitor accuracy and precision are listed in Supplementary Table 5. The isotopic
122 compositions used as the accepted values for these internal standards represent long-term averages.
123 Supplementary Table 6 summarises the mean and standard deviation of carbon and nitrogen isotopic
124 compositions for all check (quality assurance) standards analysed alongside the samples presented in this
125 study. All of the samples were analysed in at least duplicate. One internal standard (SUBC-1, seal bone
126 collagen) was in the process of attaining an average long-term value, so we treated this as a sample
127 replicate rather than a QA standard (155 aliquots of this material were analysed alongside these samples).
128 The pooled standard deviations for the sample replicates were $\pm 0.12\text{‰}$ for $\delta^{13}\text{C}$ and $\pm 0.14\text{‰}$ for $\delta^{15}\text{N}$
129 ($df=300$).

130 Standard uncertainty for the $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ measurements of the samples was estimated following Szpak
131 *et al.*⁷⁵, which largely follows the method presented in Magnusson *et al.*⁹⁵. Systematic errors ($u_{(bias)}$) were
132 calculated to be $\pm 0.08\text{‰}$ for $\delta^{13}\text{C}$ and $\pm 0.12\text{‰}$ for $\delta^{15}\text{N}$ based on the known uncertainty in the check
133 standards and the observed standard deviations of those check standards from the known values.
134 Random errors ($uR_{(w)}$) were calculated to be $\pm 0.14\text{‰}$ for $\delta^{13}\text{C}$ and $\pm 0.17\text{‰}$ for $\delta^{15}\text{N}$ based on the pooled
135 standard deviations of the check standards and sample replicates. Standard uncertainty, calculated as the
136 root-sum-square of $u_{(bias)}$ and ($uR_{(w)}$) was determined to be ± 0.16 for $\delta^{13}\text{C}$ and ± 0.21 for $\delta^{15}\text{N}$.

137

138 **Supplementary Results**

139 **Bone dissolution methods and Zn isotopy**

140 The slow dissolution method with 1 M HCl (method 1) resulted in a complete demineralisation without
141 destruction of the spongeous bone collagen. Bones treated according to the enamel dissolution protocol
142 (method 2) resulted in a complete demineralisation, but also an only incomplete collagen dissolution,
143 evidenced by a flaky collagen residue in the solution. Treatment with concentrated nitric acid (method 3),
144 resulted in a complete dissolution of the mineral and collagen phase (Supplementary Figure 1). Repeated
145 analysis of the reference materials NIST SRM 1400 yielded mean $\delta^{66}\text{Zn}$ values of $0.95 \pm 0.02\text{‰}$, $0.96 \pm$
146 0.03‰ and $0.95 \pm 0.03\text{‰}$ when being dissolved with the dissolution methods 1, 2 and 3, respectively.
147 Repeated analysis of the reference materials NIST SRM 1486 yielded mean $\delta^{66}\text{Zn}$ values of $1.24 \pm 0.03\text{‰}$,
148 $1.23 \pm 0.04\text{‰}$ and $1.22 \pm 0.03\text{‰}$ when being dissolved with the dissolution methods 1, 2 and 3,
149 respectively (Supplementary Figure 2). Both SRM reference materials have $\delta^{66}\text{Zn}$ values that correspond
150 to those published elsewhere^{11,13,14} (Supplementary Table 2). Samples taken from the same bone sample
151 and treated with different dissolution methods show a standard deviation for $\delta^{66}\text{Zn}$ values between 0.00
152 and 0.11‰ (Supplementary Table 2). Mean standard deviation for bone samples treated with different
153 dissolution methods (0.04‰) is close to the range of measurement uncertainty (0.01 to 0.03‰ 1SD).
154 Mean standard deviation for replicate analyses of SRM reference materials and bone samples are for both
155 0.03‰ (1SD). Attempts to analyse the $\delta^{66}\text{Zn}$ values of the isolated collagen after demineralisation
156 following the first dissolution method were unsuccessful due to the too low Zn concentrations in the
157 collagen samples (< 1.2 $\mu\text{g/g}$ bone).

158 Supplementary Discussion**159 Impact of collagen on bone $\delta^{66}\text{Zn}$ values and application for multi-proxy dietary studies**

160 The treatment with different dissolution methods did not lead to any variation in the bone ash NIST SRM
161 1400 nor in the bone meal NIST SRM 1486 $\delta^{66}\text{Zn}$ values, despite the latter still containing a collagen organic
162 component (Supplementary Figure 2). As with the SRM reference materials, the demineralisation
163 methods tested herein did not lead to systematic significant variability in $\delta^{66}\text{Zn}$ values of selected samples
164 (Supplementary Table 2). Although we used archaeological bone samples for this study, their collagen
165 content was still as high as in modern mammal bones (Supplementary Table 1). Minor variability between
166 bone samples treated with different dissolution methods may arise from resampling of larger bone
167 fragments and potential heterogeneities within a larger bone sample. While each method fully
168 demineralised the bone, the extent of collagen dissolution varied: from collagen preservation to complete
169 collagen dissolution (Supplementary Figure 1). After collagen extraction following the dissolution protocol
170 1, we tried to measure the Zn isotopic composition of the collagen relative to the mineral phase. However,
171 demineralised collagen Zn concentrations were between 0.08 and 1.2 $\mu\text{g/g}$ bone, and therefore too low
172 for zinc isotopic analyses. As such, Zn bonded to the organic phase in bones likely has no impact on bulk
173 bone Zn isotopic compositions. It is possible that all Zn initially bonded to the organic phases of the bone
174 may have been released during demineralisation regardless of the method used. However, the Zn
175 concentration of the organic phase is likely too insignificant in comparison to that of the mineral phase.
176 Zn^{2+} substitutes for Ca^{2+} in bioapatite⁹⁶ and synthesised hydroxylapatites⁹⁷. The bone mineral phase acts
177 as a sink for Zn, whereas Zn bound to the organic matrix appears to be volumetrically negligible compared
178 to the bulk bone Zn⁹⁸.

179 The absence of an impact of collagen on bulk bone $\delta^{66}\text{Zn}$ values has some important implications for the
180 use of Zn in bone as a dietary proxy. Fossil bone samples can be treated like modern samples, independent
181 of the collagen preservation, provided they show neither Zn detrital contamination nor diagenetic
182 modification. Mineral phase $\delta^{66}\text{Zn}$ can be coupled with collagen extraction protocols applied for $\delta^{15}\text{N}$ and
183 $\delta^{13}\text{C}$ analyses on the same sample. Dissolution method 1 followed a protocol similar to common collagen
184 extraction protocols applied for bone collagen $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ analysis. Thus, $\delta^{66}\text{Zn}$ analysis could be
185 routinely coupled with $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ on a single sample. Coupling of $\delta^{66}\text{Zn}$ with $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ analyses
186 will allow a more robust, complementary multi-proxy dietary reconstruction without the necessity to
187 resample archaeological material. This is of particular interest for archaeological and palaeontological
188 assemblages with small sized samples or samples too valuable for repeated destructive analyses (e.g.,
189 human remains). Additionally, collagen extraction does not always provide $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ results due to,
190 for example, too low collagen content in the sample. However, if the dissolved phase is collected for Zn
191 isotope analysis, these samples can still provide valuable dietary information and are thus not completely
192 "lost".

193 Preservation of $\delta^{15}\text{N}$, $\delta^{13}\text{C}$ and $\delta^{66}\text{Zn}$ values

194 All bone samples demonstrate exceptional bone collagen preservation based on collagen yields and
195 elemental compositions (wt% C, wt% N, C:N ratios) within the range of modern mammal bone^{49,50}.
196 Diagenetic modification of original bone $\delta^{66}\text{Zn}$ values may be expected following bone recrystallisation
197 and associated accumulation or leaching of trace elements or secondary mineral precipitation. However,
198 such diagenetic modifications are strongly associated with the loss of the organic matrix causing increased

199 porosity and bioapatite recrystallisation^{99,100}. The excellent preservation of the collagen argues against
 200 significant diagenetic modification of the bioapatite Zn content. Reynard and Balter¹⁰¹ suggested that
 201 diagenetic modification of trace element content might result in a correlation between concentration,
 202 expressed as 1/concentration, and isotopic composition of the element in question. We observe no
 203 correlation between $\delta^{66}\text{Zn}$ and Zn concentrations when analysing all *P. hispida* or *U. maritimus* samples
 204 ($R^2 = 1.38\text{e-}4$, $p = 0.97$, $R^2 = 1.20\text{e-}2$, $p = 0.46$, Supplementary Figure 3). The lack of a correlation suggests
 205 that soil Zn addition and/or diagenetic zinc incorporation into the bone samples did not contribute to the
 206 samples' $\delta^{66}\text{Zn}$ value. Correlation of *P. hispida* zinc concentration and $\delta^{66}\text{Zn}$ values within a single site is
 207 also typically weak or non-existent. However, for the KkJg-1 and JfEl-4 sites there seems to be a statistically
 208 significant correlation between $\delta^{66}\text{Zn}$ and $1/[\text{Zn}]$, with R^2 of 0.44 ($n=11$, $p = 0.03$) and 0.53 ($n=9$, $p = 0.01$).
 209 Still, post-hoc Tukey pair-wise comparisons show that $\delta^{66}\text{Zn}$ values from both sites are not distinct from
 210 other sites in regards to their $\delta^{66}\text{Zn}$ values. Mean $\delta^{66}\text{Zn}$ values from the JfEl-4 site are the same as the
 211 mean values from the nearby KkDo-1 site (Fig. 2), which does not show a correlation between zinc isotopic
 212 composition and concentration. *P. hispida* bones from both the JfEl-1 and KkDo-1 sites have, as with $\delta^{66}\text{Zn}$,
 213 very similar $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values, distinct from other geographic regions (Fig. 2, Supplementary Table 1),
 214 indicating preservation of original isotopic signals. Most importantly, for the JfEl-4 site *U. maritimus*
 215 samples show no correlation between $\delta^{66}\text{Zn}$ and $1/[\text{Zn}]$ ($R^2 = 0.06$, $n = 5$, $p = 0.68$) arguing against a
 216 diagenetic alteration or contamination causing the correlation for *P. hispida* for this site. Instead of
 217 diagenetic modification or soil contamination, individual taxonomically misidentified bones could also
 218 explain correlations between proxies (including $[\text{Zn}]$). Alternatively, these populations may include
 219 individuals with higher mobility or differences in diet.

220 Surface water dissolved-Zn concentrations and isotopic compositions are expected to vary within the
 221 surface water across the Arctic to some degree as observed in other oceans^{35,90}. Mean site Zn
 222 concentration and $\delta^{66}\text{Zn}$ values may therefore reflect variations in POM zinc concentration and isotopic
 223 composition passed along the food chain. Indeed, Zn concentrations in phytoplankton vary depending on
 224 Zn availability and primary producers¹⁰². In the Western Arctic for example, Zn:C stoichiometries for shelf
 225 phytoplankton were higher compared to offshore phytoplankton⁹¹. A weak correlation between $\delta^{66}\text{Zn}$ and
 226 Zn concentrations within a population may arise from individuals that are more mobile or distinct in their
 227 diet. In any case, a much higher correlation would be expected between Zn concentration and isotopic
 228 composition if diagenetic Zn modification or soil contamination would be a dominant influence for the
 229 KkJg-1 and JfEl-4 sites. For example, more porous cancellous bone of *O. rosmarus* from the QjJx-1 site
 230 showed a much higher correlation ($R^2 = 0.82$) between $1/[\text{Zn}]$ and $\delta^{66}\text{Zn}$ values, likely due to the cancellous
 231 bone retaining soil particles¹³.

232 For seal bone samples from the three sites JfEl-4, KcFs-2 and NkRi-3, taxonomic misidentification cannot
 233 be completely ruled out, i.e. some samples may also belong to other Phocidae than *P. hispida*.
 234 Additionally, the JfEl-4 site has, besides the QjJx-1 site, the highest on-site *P. hispida* bone $\delta^{15}\text{N}$ and $\delta^{66}\text{Zn}$
 235 variability with 1.77 and 0.36 ‰, respectively. This could indicate that individual bones indeed belong to
 236 other Phocidae. Again, these sites generally have mean $\delta^{15}\text{N}$, $\delta^{13}\text{C}$ and $\delta^{66}\text{Zn}$ values similar to other sites
 237 in the same geographic region (Fig. 2, Supplementary Table 1). The three sites JfEl-4, KcFs-2, NkRi-3 do
 238 not belong to the populations drawn out to be distinct from others by $\delta^{66}\text{Zn}$ post-hoc Tukey pair-wise
 239 comparisons. If several bones from these sites would belong to different Phocidae, we may expect a
 240 higher isotopic variability for the sites, as some Phocidae were shown to have distinct $\delta^{15}\text{N}$, $\delta^{13}\text{C}$ and $\delta^{66}\text{Zn}$
 241 values due to differences in their diet¹³. Most importantly, however, *P. hispida* is by far the dominant

242 faunal component in Arctic archaeological sites⁴⁷. We assume that most, if not all, Phocidae bone samples
243 from these sites, indeed belong to *P. hispida*.

244 The typically high homogeneity in *P. hispida* and *U. maritimus* bone $\delta^{15}\text{N}$, $\delta^{13}\text{C}$ and $\delta^{66}\text{Zn}$ values within a
245 site (Supplementary Table 1) strongly argues against sample diagenesis, contamination issues and/or
246 taxonomic misidentifications as a significant cause of isotopic variability within and between sites.
247 However, it may explain unusual *P. hispida* outlier $\delta^{15}\text{N}$ and $\delta^{66}\text{Zn}$ values from the QjJx-1 site on Little
248 Cornwallis Island¹³. Even excluding the one *P. hispida* sample from the QjJx-1 site with an unusually high
249 $\delta^{66}\text{Zn}$ values (1‰), post-hoc Tukey pair-wise comparisons draw out this population as distinct from others
250 (Extended Data Figure 1). This population also has the highest variability of *P. hispida* bone collagen $\delta^{15}\text{N}$
251 values (3.85‰) and a high variability in $\delta^{13}\text{C}$ values (2.47‰). It is also possible that this variation
252 originates from more mobile individuals within the population, or larger differences in food sources for
253 individuals. Within a *P. hispida* population from Svalbard, Norway, Lone et al.¹⁰³ demonstrated, that 18
254 from 60 tagged individuals undertook extensive seasonal migrations. Individuals that are more mobile
255 might consume a different type of prey in different regions, or prey for which tissue isotopic composition
256 is influenced by different baseline values. If the samples from one site contain a higher percentage of
257 bones from more mobile individuals, that population may have a higher $\delta^{15}\text{N}$, $\delta^{13}\text{C}$ and $\delta^{66}\text{Zn}$ variability
258 compared to others and perhaps demonstrate a correlation between different dietary proxies. For the
259 KkJg-1 site in Hudson Bay, two *U. maritimus* samples show anomalously high $\delta^{66}\text{Zn}$ values which may
260 relate to non-dietary factors such as contamination, misidentification, diagenesis or physiological effects.
261 One of these two outlier samples has a distinct dark pervasive colouration of the bone, which may imply
262 contamination and/or preservation issues. A bone sample identified as *D. leucas* from the JfEl-4 site has
263 an unusually low $\delta^{15}\text{N}$ value (11.82‰). We have too little *D. leucas* $\delta^{66}\text{Zn}$ values to draw a conclusion on
264 its isotopic range. However, one *Odobenus rosmarus* bone from the same site has a similar $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$
265 isotopic composition and an only slightly higher $\delta^{66}\text{Zn}$ value (Supplementary Figure 4). We cannot exclude
266 the possibility of taxonomic misidentification for the unusual *D. leucas* sample and have hence excluded
267 it from further discussion. Still, a significant influence of diagenesis, soil contamination or taxonomically
268 misidentified can be excluded for most samples.

269 **Baseline carbon and nitrogen isotope variability recorded in *P. hispida* bones**

270 High geographic variability in consumer tissue $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values limits their use as dietary proxies when
271 studying highly mobile species or combining multiple geographically distinct populations. Post-hoc Tukey
272 pair-wise comparisons demonstrate a large heterogeneity in $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values between archaeological
273 populations (Extended Data Figure 2-3). Most of the differences can be linked to geographic groups
274 resulting in $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values from populations of different regions plotting in distinct groups on $\delta^{15}\text{N}$
275 versus $\delta^{13}\text{C}$ plots (Fig. 1). We grouped sites from the Bering/Chukchi Sea, Amundsen and Coronation Gulf,
276 CAA, North Water Polynya, Hudson Bay, and sites influenced by the Labrador Sea in the Hudson Strait and
277 Frobisher Bay (Fig. 1 a). The most likely reasons for varying mean *P. hispida* bone $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values
278 between the sites is a potential difference in diet between populations, or variations in food web baseline
279 $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values.

280 A varying degree of high and low trophic level food can impact $\delta^{15}\text{N}$ values but would have very little or
281 no effect on $\delta^{13}\text{C}$ values. Therefore, feeding on a different trophic level may contribute to $\delta^{15}\text{N}$ variability
282 between the archaeological sites, but cannot explain the differences observed in their $\delta^{13}\text{C}$ values.
283 Additionally, modern *P. hispida* across the Arctic is believed to feed on a similar trophic level⁵⁶. Different

284 populations may have also relied to a varying degree on benthic *versus* pelagic foraging. Benthic animals
285 tend to be $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ enriched compared to pelagic animals¹⁰⁴. However, a more benthic *versus* pelagic
286 diet alone is an unlikely explanation for the full range of bone $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values observed between the
287 archaeological sites in this study. Seasonal shifts in modern *P. hispida* muscle $\delta^{13}\text{C}$ values interpreted as
288 changes in diet from a pelagic open-water to a more ice-cover and/or benthic diet were less than 1 ‰⁵³.
289 As with muscle $\delta^{13}\text{C}$ values, these authors observed a similar pattern for muscle $\delta^{15}\text{N}$ values with lower
290 values during the open water period. However, the shift in $\delta^{15}\text{N}$ was even lower and statistically non-
291 significant⁵³. Still, $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values have a weak correlation for *P. hispida* (Fig. 1 b) between all *P.*
292 *hispida* samples ($R^2=0.21$, $p < 0.05$), which could indicate that differences in food source between
293 populations contribute to the observed $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ site variability. However, the correlation between
294 $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values could also be explained by baseline variability. Depending on the controlling factor,
295 baseline $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ variations may follow the same direction, for example with lower values for both
296 with decreasing productivity and/or increased terrestrial nutrient input²⁸.

297 Here we observe similar trends in mean $\delta^{13}\text{C}$ values from *P. hispida* bone collagen as observed in modern
298 POM³² with generally higher values at sites with connections to more open marine areas and lower values
299 in the CAA, Hudson Bay and Beaufort Sea (Fig. 1, 2 a, b). Our archaeological data also agrees in variability
300 and general geographic spacing with modern *P. hispida* muscle tissue $\delta^{13}\text{C}$ variability observed throughout
301 the Arctic. Modern muscle tissue $\delta^{13}\text{C}$ values can vary up to 5 ‰ between geographically distinct
302 populations^{51,52,53,54}. As with the archaeological record, the lowest values in modern *P. hispida* tissue are
303 also observed close to the Canadian mainland^{55,56}. Despite investigating samples from only one area in the
304 Bering Strait/Southern Chukchi Sea, our results agree well with the documented pronounced west-east
305 $\delta^{13}\text{C}$ depletion in consumers throughout the Chukchi Sea and Beaufort Sea^{6,27,28,31}. The lowest mean $\delta^{13}\text{C}$
306 values in *P. hispida* bone collagen were also reported from the area SE Beaufort Sea/Amundsen Gulf
307 extending even into the Coronation Gulf, while the highest mean value can be found in bones from the
308 Bering Strait (Fig. 1, 2 a). The up to 3.4 ‰ lower mean $\delta^{13}\text{C}$ values between *P. hispida* bone collagen from
309 the SE Beaufort Sea/Amundsen Gulf relative to the Bering Strait sites is comparable to previously reported
310 $\delta^{13}\text{C}$ gradients for zooplankton (~4.8 ‰, ~3.3 - 3.8 ‰)^{27,28}, secondary consumers (< 2.4 ‰)⁶ and filter
311 feeders (< 6.4 ‰)⁶, between these water bodies.

312 As for *P. hispida* $\delta^{15}\text{N}$ in this study, previous studies have not shown a $\delta^{13}\text{C}$ comparable geographic
313 variation of nitrogen isotopic compositions between the Bering Sea, Chukchi Sea and Beaufort Sea areas
314 within animals of higher trophic levels^{6,55}. We observe the lowest $\delta^{15}\text{N}$ values for *P. hispida* bone collagen
315 in the most eastern sites from the Hudson Strait and East Baffin Island in proximity to the Labrador Sea
316 which links the Atlantic to the Hudson Bay and Baffin Bay (Fig. 1 a, 2 b). These lower values are in good
317 agreement with zooplankton based $\delta^{15}\text{N}$ Atlantic isoscapes, showing an increase in baseline $\delta^{15}\text{N}$ values
318 from the Labrador Sea towards Baffin Bay and CAA values²⁶. Corresponding with our archaeological bone
319 collagen $\delta^{15}\text{N}$ values (Fig. 2 b), modern muscle and liver tissue of *P. hispida* has lower values (14.7 ‰) in
320 populations from the Labrador Sea relative to populations in terrestrial influenced regions close to the
321 Canadian mainland in the CAA (17.2 to 17.9 ‰), such as the Amundsen Gulf and Rae Strait^{55,56}.

322 Accordingly, dietary differences between populations may contribute to some of the observed bone $\delta^{15}\text{N}$
323 and $\delta^{13}\text{C}$ variability between archaeological sites. However, the carbon and nitrogen isotopic variability
324 between the archaeological sites is in good agreement with modern geographical variations from
325 zooplankton, food web and *P. hispida* tissue isotope datasets. We therefore assume geographically

326 varying food web baseline isotope values to be the main factor controlling the major isotopic variability
 327 between the sites.

328 **Possible non-dietary controls on isotopic trophic discrimination factors**

329 The significant variability in $\Delta^{15}\text{N}_{U. maritimus - P. hispida}$ (2.21 to 7 ‰) highlights the difficulties of assigning a
 330 trophic level to species across multiple locations using $\delta^{15}\text{N}$ values alone, particularly in archaeological
 331 material. Multiple factors may produce the inter-site $\Delta^{15}\text{N}_{U. maritimus - P. hispida}$ as well as $\Delta^{66}\text{Zn}_{U. maritimus - P. hispida}$
 332 variability; for example, relative differences in the consumption of higher and lower trophic level prey.
 333 However, feeding at substantially different trophic levels is incompatible with modern *U. maritimus*
 334 population trophic levels and diet variability^{60,61}. Additionally, most other *U. maritimus* prey species feed
 335 on lower or similar trophic levels relative to *P. hispida*^{8,105}. It is possible that due to the low intra-site
 336 sample size for both or either species, our site mean isotopic values do not capture the true means of the
 337 different populations. As the bones analysed are from individuals hunted or scavenged by humans, we
 338 cannot exclude differences in the segments of a *P. hispida* population hunted by humans and *U. maritimus*. For example, remains of *P. hispida* pups are very rare in archaeological assemblages^{47,106}. *U. maritimus*, however, regularly preys on *P. hispida* pups and the contribution of pups to its diet may vary
 339 for different individuals, populations and with seal productivity^{107,108}. As pups rely on their mother's milk,
 340 they effectively feed on a different trophic level leading to higher collagen $\delta^{15}\text{N}$ values than adults¹⁰⁹.
 341 Consequently, a higher consumption of *P. hispida* pups by *U. maritimus* relative to humans can lead to
 342 higher $\Delta^{15}\text{N}_{U. maritimus - P. hispida}$ values within an archaeological assemblage. Additional uncertainties for inter-
 343 site $\Delta^{15}\text{N}_{U. maritimus - P. hispida}$ values may arise from a higher contribution of migratory species such as *D. leucas*¹¹⁰
 344 to the diet of certain *U. maritimus* populations⁶¹. It remains, as of yet, unclear if and how
 345 physiological effects may influence $\delta^{66}\text{Zn}$ variability within a population. However, dietary differences as
 346 well as effects related to an archaeological assemblage (e.g., not capturing true population means) might
 347 have a similar effect on $\Delta^{66}\text{Zn}_{U. maritimus - P. hispida}$ as on $\Delta^{15}\text{N}_{U. maritimus - P. hispida}$.
 348

350 **Trophic level assessment**

351 In order to establish the relationship between bone $\delta^{66}\text{Zn}$ and trophic level for the Arctic mammals of this
 352 study, we first had to assess the trophic level of every single animal. To do so, we used the following
 353 equation based on $\delta^{15}\text{N}$ values established by Hobson and Welch⁸:

354 $\text{TL} = 1 + (\delta^{15}\text{N} - 5.4)/3.8$ (Supplementary Equation 1)

355 Where TL is the consumer trophic level and the $\delta^{15}\text{N}$ enrichment value is +3.8 ‰ corresponding to the
 356 trophic level spacing of TL = +1 between *P. hispida* and *U. maritimus*⁸. In the Lancaster Sound region (LSR)
 357 where this relationship was established, *U. maritimus* almost exclusively feed on this specific species of
 358 seals⁸.

359 The average trophic level of the Arctic animals for which both $\delta^{15}\text{N}$ and $\delta^{66}\text{Zn}$ values are available (ref.¹³
 360 and this study) calculated following Supplementary Equation 1 are given Supplementary Table 7 (extreme
 361 outlier values were excluded; see also Supplementary Figure 5)

362 The $\delta^{15}\text{N}$ trophic level positions are in good agreement with the previous findings of Hobson and Welch⁸
 363 for the LSR as well as other locations^{52,105,111}. However, these TL estimations only represent oversimplified
 364 estimations, not considering population specific dietary differences, location specific baseline variations
 365 and organism specific trophic and tissue-type enrichment factors.

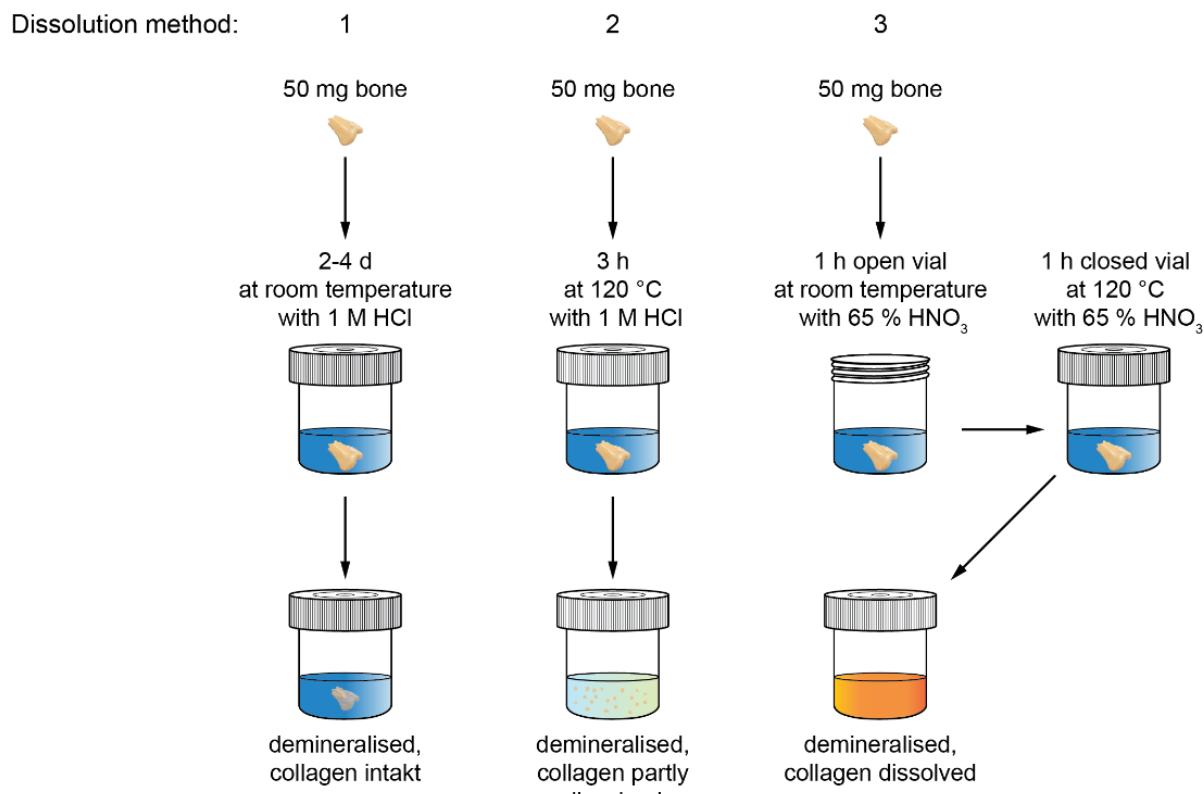
366 Based on the nitrogen isotope data we established two equations to estimate the trophic level of marine
 367 mammals using bone $\delta^{66}\text{Zn}$ values (Supplementary Equations 2 and 3).

368 $\text{TL} = -2.76 * \delta^{66}\text{Zn} + 5.48$ (Supplementary Equation 2)

369 With a $R^2=0.57$.

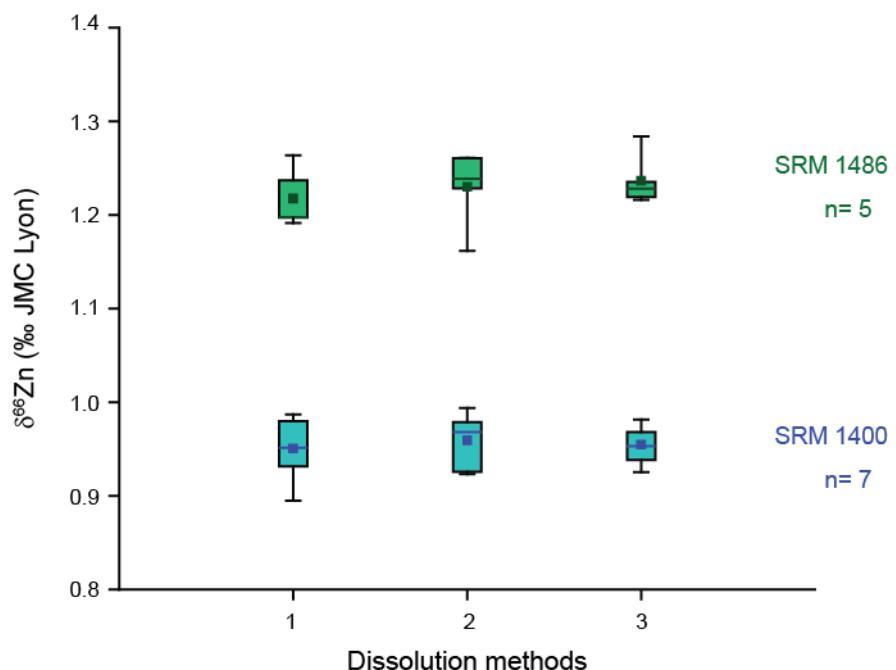
370 Without including the *O. rosмарus* bones, the relationship becomes:

371 $\text{TL} = -2.64 * \delta^{66}\text{Zn} + 5.48$ (Supplementary Equation 3)


372 With a $R^2=0.64$.

373 Supplementary Equation 3 predicts a $\delta^{66}\text{Zn}$ bone value of 1.32 ‰ for a TL = 2, and 0.94 ‰ for a TL = 3
 374 which is very close to that seen in bones of terrestrial herbivores (TL = 2) and carnivores (TL = 3)¹¹. Applying
 375 Supplementary Equation 3 to modern terrestrial mammal bones from Koobi Fora (Kenya)¹¹ gives us a TL
 376 of 1.8 for the average herbivore value (*Madoqua guentheri*, *Tragelaphus imberis*, *Litocranius walleri*,
 377 *Damaliscus korrigum*, *Oryx beisa*, *Equus burchelli*) and 3.3 for combined carnivores (*Felis leo*, *Caracal*
 378 *caracal*, *Canis* sp., *Felis silvestris*).

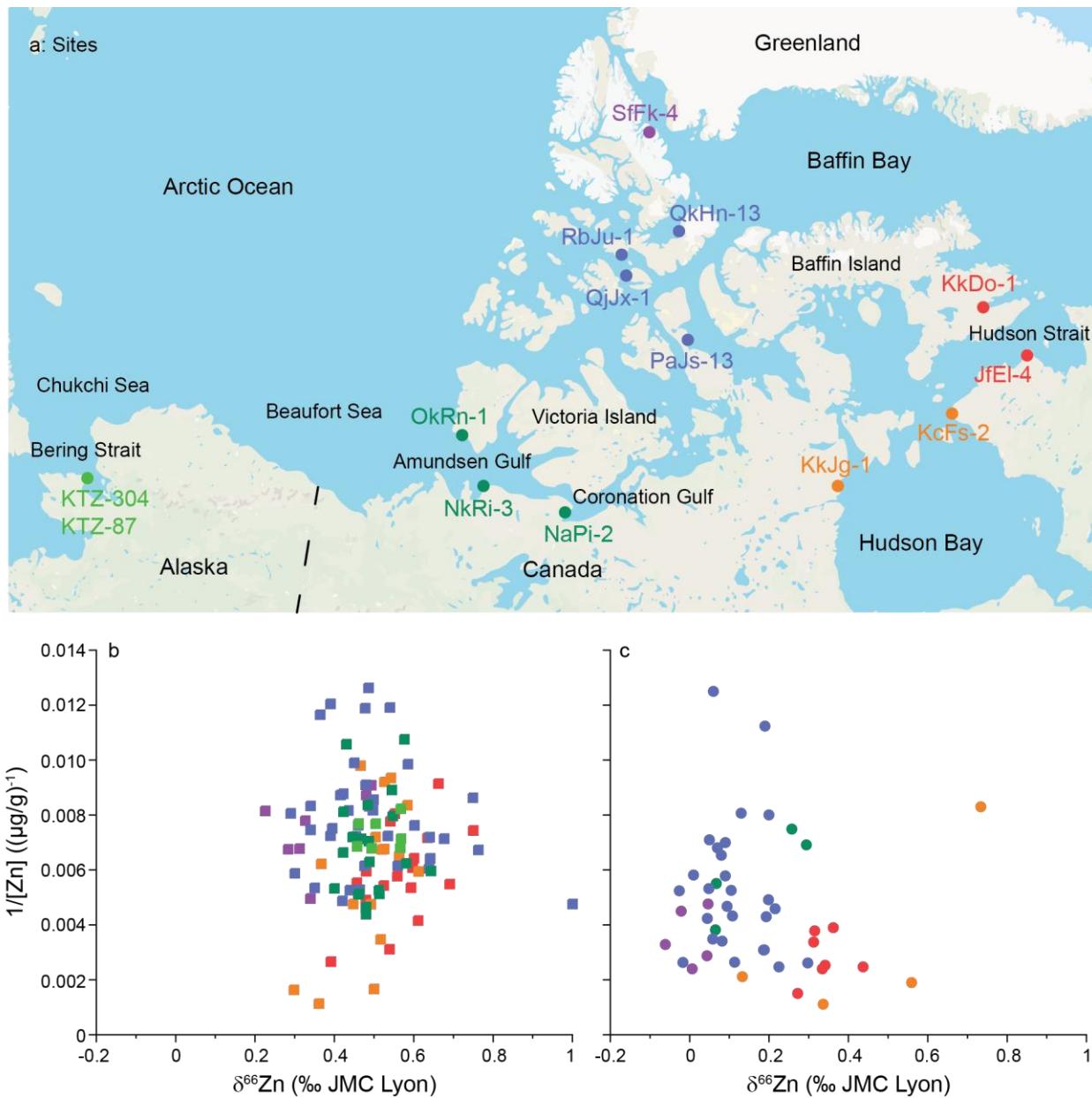
379 The $\delta^{66}\text{Zn}$ TL estimates are generally in agreement with the species respective trophic positions
 380 (Supplementary Table 8, Supplementary Figure 5). *Erignathus barbatus* $\delta^{66}\text{Zn}$ estimated TL is lower than
 381 reported by Hobson & Welch⁸ and Hobson et al.⁵² (TL = 4.0 to 4.3), but it is close to the TL estimate (TL =
 382 3.4) of Pauly et al.¹⁰⁵. *O. rosмарus* bone $\delta^{66}\text{Zn}$ values do not seem to reflect their trophic position. $\delta^{66}\text{Zn}$
 383 TL estimates for *O. rosмарus* place it at 4.0 to 4.1, which is too high based on its diet. *O. rosмарus* feed
 384 mostly on molluscs, especially filter-feeding bivalves such as *Mya truncata* and *Hiatella arctica*¹¹². *O.*
 385 *rosмарus* is therefore primarily a benthic feeder, whereas the other mammals primarily feed along a
 386 pelagic-based trophic chain (pelagic POM - zooplankton - planktivorous fish - piscivorous fish - piscivorous
 387 mammals - carnivorous mammals). *O. rosмарus* might be considered as feeding of a different food web,
 388 we thus recommend the use of Supplementary Equation 3 for calculating mammal TL based on bone $\delta^{66}\text{Zn}$
 389 values. Benthic food webs can also differ in $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ compared to pelagic food webs^{104,113}. Additional
 390 $\delta^{66}\text{Zn}$ analysis is required to investigate whether a primarily benthic invertebrate based diet results in a
 391 different $\delta^{66}\text{Zn}$ baseline or different Zn fractionation within consumers relative to consumers feeding
 392 along a primarily pelagic-based trophic chain. If so, then combining $\delta^{66}\text{Zn}$ with $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ analysis may
 393 be a powerful approach to identify not only relative trophic positions, but also habitat use and benthic
 394 versus pelagic dietary preferences.


395

396

397

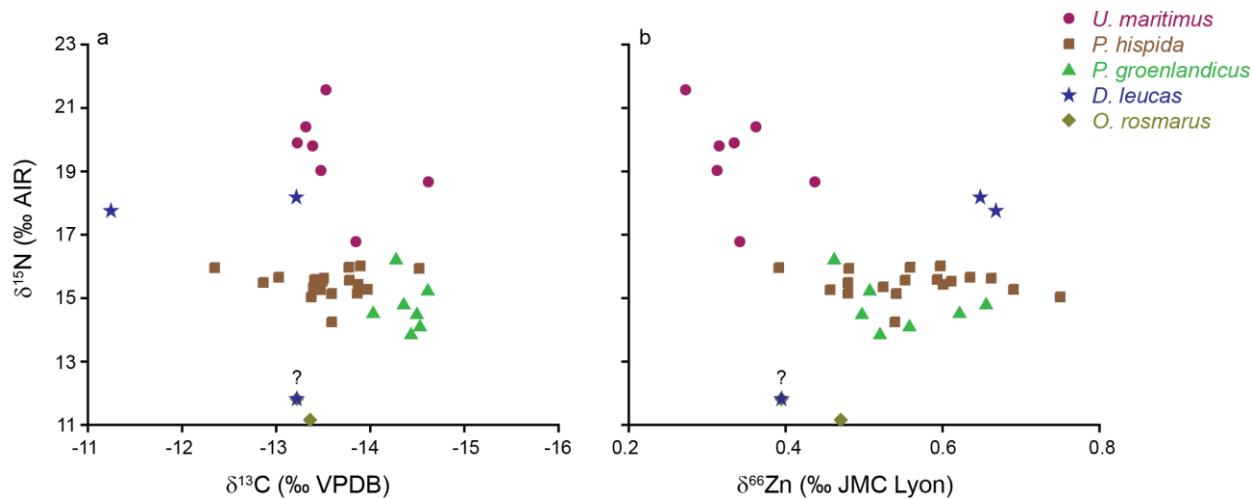
398 **Supplementary Figure 1:** Dissolution methods used to test the impact of collagen on bone mineral $\delta^{66}\text{Zn}$
399 values.



400

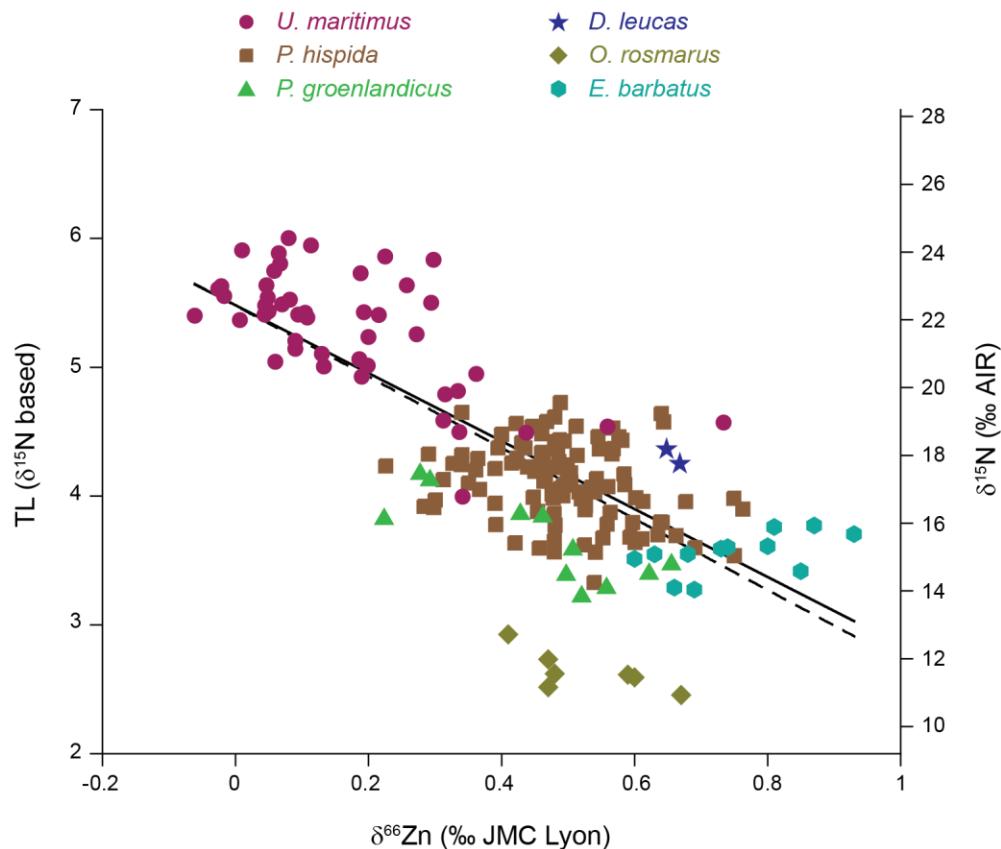
Supplementary Figure 2: Bone ash NIST SRM 1400 and bone meal NIST SRM 1486 $\delta^{66}\text{Zn}$ values obtained by applying different dissolution methods described in Supplementary Methods and Supplementary Figure

403 1. The boxes from the box and whisker plots represent the 25th–75th percentiles, with the median as a
 404 bold horizontal line and mean value as a dark filled box.


405

406

407 **Supplementary Figure 3:** $\delta^{66}\text{Zn}$ versus zinc concentrations [Zn] expressed as $1/[Zn]$ for *P. hispida* (b) and
 408 *U. maritimus* (c). Samples are colour coded after map (a) indicating the archaeological sites analysed.
 409 Colour coding: Light green for the Bering Strait; dark green for the Amundsen and Coronation Gulf; blue
 410 for the CAA; orange for the Hudson Bay; purple for North Water Polynya; and red for sites influenced by
 411 the Labrador Sea in the Hudson Strait and Frobisher Bay. An extreme outlier *P. hispida* value ($\delta^{66}\text{Zn} = 1.00$
 412 ‰, from QjJx-1¹³) is included. The map is redrawn after www.google.com/maps.


413

414

415 **Supplementary Figure 4:** $\delta^{15}\text{N}$ versus $\delta^{13}\text{C}$ (a), $\delta^{15}\text{N}$ versus $\delta^{66}\text{Zn}$ (b) of *U. maritimus* (dots), *P. hispida* (416 squares), *P. groenlandicus* (triangle), *D. leucas* (star) and *O. rosmarus* (diamond) bones for the combined 417 KkDo-1 and JfEl-4 sites. A bone sample identified as a *D. leucas* with an unusually low $\delta^{15}\text{N}$ value is 418 indicated by a star overlying a diamond and marked with a question mark. We cannot exclude the 419 possibility of taxonomic misidentification for that sample.

420

421

422 **Supplementary Figure 5:** TL calculated using $\delta^{15}\text{N}$ and $\delta^{15}\text{N}$ versus $\delta^{66}\text{Zn}$ bone values for all species
 423 analysed herein together with ref.¹³. Dashed line represents the linear fit including *O. rosmarus* samples
 424 (p -value < 0.05; $R^2 = 0.57$; $n = 183$, Supplementary Equation 2), solid line represents the linear fit excluding
 425 *O. rosmarus* samples (p -value < 0.05; $R^2 = 0.64$; $n = 176$, Supplementary Equation 3). Two extreme outlier
 426 samples based on their $\delta^{66}\text{Zn}$ values from the QjJx-1 site (*P. hispida* 1.00 ‰; *E. barbatus* 1.39 ‰)¹³ and one
 427 based on its $\delta^{15}\text{N}$ value from the JfEl-4 site (*D. leucas*? 11.82 ‰) were excluded. Additionally, only cortical
 428 bone $\delta^{66}\text{Zn}$ values for *O. rosmarus* from the QjJx-1 site were used.

429

430

431

432

433

434

435

436

437

438 **Supplementary Table 1.** $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and $\delta^{66}\text{Zn}$ dataset used in this study. Also included is the collagen (yield)
 439 weight % of carbon (wt. % C) and nitrogen (wt. % N), the collagen atomic carbon:nitrogen ratio (C/N), the
 440 bone mineral $\delta^{67}\text{Zn}$ and $\delta^{68}\text{Zn}$ values and Zn concentrations [Zn]. This dataset includes bone samples for
 441 which collagen $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values were already reported elsewhere^{4,13,43,44} as well as one site for which
 442 $\delta^{66}\text{Zn}$ was already reported¹³ (sheet 1 in the accompanying .xlsx file).

443

444

445 **Supplementary Table 2.** $\delta^{66}\text{Zn}$ values for samples and reference material dissolved using different
 446 dissolution methods (Supplementary Methods, Supplementary Figure 1, 2). $\delta^{66}\text{Zn}$ values for samples and
 447 differences in $\delta^{66}\text{Zn}$ of bone material resampled and dissolved using the different dissolution methods
 448 ($\Delta^{66}\text{Zn}$; sheet 1 in the accompanying .xlsx file). $\delta^{66}\text{Zn}$ values for reference materials using the different
 449 dissolution methods (sheet 2 in the accompanying .xlsx file).

450

451 **Supplementary Table 3.** Archaeological sites analysed in this study with approximate age of the bone
 452 samples and additional references.

Site	Approximate age (calibrated years BP)	Reference
KTZ-304	650–850	Darwent <i>et al.</i> (2013) ¹¹⁴
KTZ-087	350–550	Darwent <i>et al.</i> (2013) ¹¹⁴
NkRi-3	650–750	Moody & Hodgetts (2013) ⁴⁷
NaPi-2	550–650	Morrison (1983) ¹¹⁵
RbJu-1	3900–4100	McGhee (1979) ¹¹⁶
QkHn-13	3400–3800	Helmer (1991) ¹¹⁷
OkRn-1	300–500	Kotar (2016) ¹¹⁸
OIRr-1	650–750	Manning (1956) ¹¹⁹
QjJx-1	600–1100	Rick (1980) ¹²⁰
PaJs-13	550–650	Savelle & Habu (2004) ¹²¹
PcJq-5	550–650	Rick (1980) ¹²⁰
PeJr-1	550–650	Rick (1980) ¹²⁰
KkJg-1	325–500	Staab (1979) ¹²² Dyke <i>et al.</i> (2019) ⁴⁸
KcFs-2	450–1450	Thompson (2011) ¹²³
JfEl-4	550–700	Badgley (1980) ¹²⁴
KkDo-1	650–150	Stenton (1987) ¹²⁵
SfFk-4	550–650	Howse (2013) ¹²⁶

453

454

455 **Supplementary Table 4.** Standard deviations for the carbon and nitrogen isotopic compositions of the
 456 calibration standards used in all analytical sessions associated with the data presented in this paper.

Standard	<i>n</i>	$\delta^{13}\text{C}$ ($\pm 1\sigma$)	$\delta^{15}\text{N}$ ($\pm 1\sigma$)
USGS40	450	0.06	0.18
USGS41	438	0.18	0.12

457

458

459 **Supplementary Table 5.** Isotopic reference materials used to monitor internal accuracy and precision.

Standard	Material	Mean $\delta^{13}\text{C}$ (‰, VPDB)	Mean $\delta^{15}\text{N}$ (‰, AIR)
MET	Methionine ^a	-28.61 \pm 0.10	-5.04 \pm 0.13
NIST-1577c	Bovine liver ^a	-17.52 \pm 0.09	+8.15 \pm 0.14
SRM-1	Caribou bone collagen ^a	-19.40 \pm 0.08	+1.83 \pm 0.11
SRM-2	Walrus bone collagen ^a	-14.77 \pm 0.12	+15.59 \pm 0.13
USGS42	Human hair	-21.09 \pm 0.10	+8.05 \pm 0.10
USGS43	Human hair	-21.28 \pm 0.10	+8.44 \pm 0.10
IAEA-CH-3	Cellulose	-24.72 \pm 0.04	-

460 a. Internal standard with mean isotopic compositions representing long-term values as measured in
 461 three different laboratories.

462

463

464

465 **Supplementary Table 6.** Mean and standard deviations of all the check (QA) standards analysed in the
 466 analytical sessions associated with data presented in this paper.

Standard	<i>n</i>	$\delta^{13}\text{C}$ (‰, VPDB)		$\delta^{15}\text{N}$ (‰, AIR)	
		Mean	$\pm 1\sigma$	Mean	$\pm 1\sigma$
MET	357	-28.61	\pm 0.07	-5.03	\pm 0.13
NIST-1577c	134	-17.52	\pm 0.09	+8.15	\pm 0.12
SRM-1	123	-19.32	\pm 0.07	+1.81	\pm 0.12
SRM-2	114	-14.74	\pm 0.10	+15.60	\pm 0.08
USGS42	4	-21.09	\pm 0.02	+7.98	\pm 0.03
USGS43	3	-21.28	\pm 0.02	+8.41	\pm 0.06
IAEA-CH-3	4	-24.70	\pm 0.05		

467

468

469

470

471 **Supplementary Table 7.** $\delta^{15}\text{N}$ based trophic level (TL) estimates following Supplementary Equation 1⁸.
 472 SD = standard deviation, n = number of individuals/bone samples. Two extreme outlier samples based on
 473 their $\delta^{66}\text{Zn}$ values from the QjJx-1 site (*P. hispida* 1.00 ‰; *E. barbatus* 1.39 ‰) and one based on its $\delta^{15}\text{N}$
 474 value from the JfEl-4 site (*D. leucas?* 11.82 ‰) were excluded. Additionally, only cortical bone $\delta^{66}\text{Zn}$ values
 475 for *O. rosmarus* from the QjJx-1 site were used.

	This study and Jaouen et al., 2016b			Hobson & Welch (1992)	
Species	$\delta^{15}\text{N}$ TL	SD	n	$\delta^{15}\text{N}$ TL	n
<i>U. maritimus</i>	5.3	0.45	47	5.1	3
<i>P. hispida</i>	4.1	0.30	104	4.1	9
<i>D. leucas</i>	4.3	0.05	2	3.9	6
<i>P. groenlandicus</i>	3.7	0.32	11		
<i>E. barbatus</i>	3.6	0.16	12	4.0	4
<i>O. rosmarus</i>	2.6	0.14	7	2.9	6

476

477

478 **Supplementary Table 8.** $\delta^{66}\text{Zn}$ based trophic level (TL) estimates following Supplementary Equation 2 and
 479 3. SD = standard deviation, n = number of individuals/bone samples. Two extreme outlier samples based
 480 on their $\delta^{66}\text{Zn}$ values from the QjJx-1 site (*P. hispida* 1.00 ‰; *E. barbatus* 1.39 ‰) and one based on its
 481 $\delta^{15}\text{N}$ value from the JfEl-4 site (*D. leucas?* 11.82 ‰) were excluded. Additionally, only cortical bone $\delta^{66}\text{Zn}$
 482 values for *O. rosmarus* from the QjJx-1 site were used.

	Supplementary Equation 2		Supplementary Equation 3		
Species	$\delta^{66}\text{Zn}$ TL	SD	$\delta^{66}\text{Zn}$ TL	SD	n
<i>U. maritimus</i>	5.01	0.44	5.03	0.42	47
<i>P. hispida</i>	4.12	0.29	4.18	0.27	104
<i>D. leucas</i>	3.66	0.04	3.74	0.04	2
<i>P. groenlandicus</i>	4.21	0.39	4.27	0.37	11
<i>E. barbatus</i>	3.28	0.56	3.37	0.54	12
<i>O. rosmarus</i>	4.02	0.26	4.09	0.25	7

483

484

485

486

487

488

489

490

491 **Additional References**

492 77. Stein, R. & MacDonald, R. W. *The organic carbon cycle in the Arctic Ocean*. (Springer, 2004).

493 78. Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S. & Fairbanks, R. G. The influence of air-sea
494 exchange on the isotopic composition of oceanic carbon: Observations and modeling. *Global
495 Biogeochem. Cycles*, **9**, 653-665 (1995).

496 79. Hobson, K. A., Ambrose Jr, W. G. & Renaud, P. E. Sources of primary production, benthic-pelagic
497 coupling, and trophic relationships within the Northeast Water Polynya: insights from $\delta^{13}\text{C}$ and
498 $\delta^{15}\text{N}$ analysis. *Mar. Ecol. Prog. Ser.* **128**, 1-10 (1995).

499 80. France, R., Loret, J., Mathews, R. & Springer, J. Longitudinal variation in zooplankton $\delta^{13}\text{C}$
500 through the Northwest Passage: inference for incorporation of sea-ice POM into pelagic
501 foodwebs. *Polar Biol.* **20**, 335-341 (1998).

502 81. Søreide, J. E., Hop, H., Carroll, M. L., Falk-Petersen, S. & Hegseth, E. N. Seasonal food web
503 structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and
504 a two-source food web model. *Prog. Oceanogr.* **71**, 59-87 (2006).

505 82. Goni, M. A., Yunker, M. B., Macdonald, R. W. & Eglinton, T. I. Distribution and sources of organic
506 biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. *Mar. Chem.* **71**, 23-
507 51 (2000).

508 83. Parsons, T. R. et al. Autotrophic and heterotrophic production in the Mackenzie River/Beaufort
509 Sea estuary. *Polar Biol.* **9**, 261-266 (1989).

510 84. Dittmar, T. & Kattner, G. The biogeochemistry of the river and shelf ecosystem of the Arctic
511 Ocean: a review. *Mar. Chem.* **83**, 103-120 (2003).

512 85. Pons, M. L. et al. A Zn isotope perspective on the rise of continents. *Geobiology*, **11**, 201-214
513 (2013).

514 86. Isson, T. T. et al. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes.
515 *Geobiology*, **16**, 341-352 (2018).

516 87. Maréchal, C. N., Nicolas, E., Douchet, C. & Albarède, F. Abundance of zinc isotopes as a marine
517 biogeochemical tracer. *Geochem. Geophys. Geosyst.* **1**, 1015 (2000).

518 88. John, S. G. *The Marine Biogeochemistry of Zinc Isotopes*. [Doctoral Thesis]. (Massachusetts
519 Institute of Technology, 2007).

520 89. Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. *Ann. Rev.
521 Mar. Sci.* **5**, 191-215 (2013).

522 90. Vance, D., de Souza, G. F., Zhao, Y., Cullen, J. T. & Lohan, M. C. The relationship between zinc, its
523 isotopes, and the major nutrients in the North-East Pacific. *Earth Planet. Sci. Lett.* **525**, 115748
524 (2019).

525 91. Jensen, L. T. et al. Biogeochemical cycling of dissolved zinc in the Western Arctic (Arctic
526 GEOTRACES GN01). *Global Biogeochem. Cycles* **33**, 343-369 (2019).

527 92. Lowry, L. F., Frost, K. J. & Burns, J. J. Variability in the diet of ringed seals, *Phoca hispida*, in
528 Alaska. *Can. J. Fish. Aquat. Sci.* **37**, 2254-2261 (1980).

529 93. Born, E. W., Teilmann, J., Acquarone, M. & Riget, F. F. Habitat use of ringed seals (*Phoca hispida*)
530 in the North Water area (North Baffin Bay). *Arctic* **57**, 129-142 (2004).

531 94. Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future
532 importance of large whales as food for polar bears. *Front. Ecol. Environ.* **16**, 515-524 (2018).

533 95. Magnusson, B., Näykki, T., Hovind, H. & Krysell, M. *Handbook for the calculation of
534 measurement uncertainty in environmental laboratories*. (Nordtest Technical Report 537, 2012).

535 96. Tang, Y., Chappell, H. F., Dove, M. T., Reeder, R. J. & Lee, Y. J. Zinc incorporation into
536 hydroxylapatite. *Biomaterials* **30**, 2864-2872 (2009).

537 97. Mayer, I., Apfelbaum, F. & Featherstone, J. D. B. Zinc ions in synthetic carbonated
 538 hydroxyapatites. *Arch. Oral Biol.* **39**, 87-90 (1994).

539 98. Murray, E. J. & Messer, H. H. Turnover of bone zinc during normal and accelerated bone loss in
 540 rats. *J. Nutr.* **111**, 1641-1647 (1981).

541 99. Hedges, R. E. Bone diagenesis: an overview of processes. *Archaeometry* **44**, 319-328 (2002).

542 100. Trueman, C. N., Behrensmeyer, A. K., Tuross, N. & Weiner, S. Mineralogical and compositional
 543 changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic
 544 mechanisms and the role of sediment pore fluids. *J. Archaeol. Sci.* **31**, 721-739 (2004).

545 101. Reynard, B. & Balter, V. Trace elements and their isotopes in bones and teeth: Diet,
 546 environments, diagenesis, and dating of archeological and paleontological samples.
 547 *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **416**, 4-16 (2014).

548 102. Twining, B. S., Rauschenberg, S., Morton, P. L. & Vogt, S. Metal contents of phytoplankton and
 549 labile particulate material in the North Atlantic Ocean. *Prog. Oceanogr.* **137**, 261-283 (2015).

550 103. Lone, K., Hamilton, C. D., Aars, J., Lydersen, C. & Kovacs, K. M. Summer habitat selection by
 551 ringed seals (*Pusa hispida*) in the drifting sea ice of the northern Barents Sea. *Polar Res.* **38**, 3483
 552 (2019).

553 104. Iken, K., Bluhm, B. A. & Gradinger, R. Food web structure in the high Arctic Canada Basin:
 554 evidence from $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ analysis. *Polar Biol.* **28**, 238-249 (2005).

555 105. Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine
 556 mammals. *ICES J. Mar. Sci.* **55**, 467-481 (1998).

557 106. Woollett, J. Oakes Bay 1: A preliminary reconstruction of a Labrador Inuit seal hunting economy
 558 in the context of climate change. *Geogr. Tidsskr.* **110**, 245-259 (2010).

559 107. Stirling, I. & Archibald, W. R. Aspects of predation of seals by polar bears. *J. Fish. Res. Board Can.*
 560 **34**, 1126-1129 (1977).

561 108. Pilfold, N. W., Derocher, A. E., Stirling, I. & Richardson, E. Polar bear predatory behaviour reveals
 562 seascapes distribution of ringed seal lairs. *Popul. Ecol.* **56**, 129-138 (2014).

563 109. Elorriaga-Verplancken, F., Auriolles-Gamboa, D., Newsome, S. D. & Martínez-Díaz, S. F. $\delta^{15}\text{N}$ and
 564 $\delta^{13}\text{C}$ values in dental collagen as a proxy for age-and sex-related variation in foraging strategies
 565 of California sea lions. *Mar. Biol.* **160**, 641-652 (2013).

566 110. Hauser, D. D., Laidre, K. L., Suydam, R. S. & Richard, P. R. Population-specific home ranges and
 567 migration timing of Pacific Arctic beluga whales (*Delphinapterus leucas*). *Polar Biol.* **37**, 1171-
 568 1183 (2014).

569 111. Haug, T. et al. Trophic level and fatty acids in harp seals compared with common minke whales
 570 in the Barents Sea. *Mar. Biol. Res.* **13**, 919-932 (2017).

571 112. Fisher, K. I. & Stewart, R. E. A. Summer foods of Atlantic walrus, *Odobenus rosmarus rosmarus*,
 572 in northern Foxe Basin, Northwest Territories. *Can. J. Zool.* **75**, 1166-1175 (1997).

573 113. France, R. L. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb
 574 implications. *Mar. Ecol. Prog. Ser.* **124**, 307-312 (1995).

575 114. Darwent, J., Mason, O. K., Hoffecker, J. F. & Darwent, C. M. 1,000 years of house change at Cape
 576 Epsenberg, Alaska: A case study in horizontal stratigraphy. *Am. Antiq.* **78**, 433-455 (2013).

577 115. Morrison, D. A. Thule Sea Mammal Hunting in the Western Central Arctic. *Arctic Anthropol.* **20**,
 578 61-78 (1983).

579 116. McGhee, R. *The Palaeoeskimo Occupations at Port Refuge, High Arctic Canada. Archaeology
 580 Survey of Canada Paper 92.* (Ottawa: National Museums of Canada, 1979).

581 117. Helmer, J. W. The Palaeo-Eskimo Prehistory of the North Devon Lowlands. *Arctic* **44**, 301-317
 582 (1991).

583 118. Kotar K. *Variability in Thule Inuit Subsistence Economy: A Faunal Analysis of OkRn-1, Banks
 584 Island, N.W.T.* [M.A. Thesis]. (London, Ontario: The University of Western Ontario, 2016).

585 119. Manning T. H. Narrative of a Second Defence Research Board Expedition to Banks Island, with
586 Notes on the Country and Its History. *Arctic* **9**, 3-77 (1956).

587 120. Rick, A. M. Non-Cetacean Vertebrate Remains from Two Thule Winter Houses on Somerset
588 Island, N.W.T. *Can. J. Archaeol.* **4**, 99-117 (1980).

589 121. Savelle, J. M. & Habu, J. A Processual Investigation of a Thule Whale Bone House, Somerset
590 Island, Arctic Canada. *Arctic Anthropol.* **41**, 204-221 (2004).

591 122. Staab, M. L. *Analysis of faunal material recovered from a Thule Eskimo site on the Island of*
592 *Silumiut, N.W.T., Canada*. In: *Thule Eskimo Culture: An Anthropological Retrospective.*
593 *Archaeological Survey of Canada Paper No. 88*, (Ed. McCartney A. P.), 349-379 (Ottawa: National
594 Museums of Canada, 1979).

595 123. Thompson, A. K. *A Zooarchaeological Analysis of a Late Dorset Faunal Assemblage from the*
596 *KcFs-2 Site (Nunavik, Quebec)*. [M.A. Thesis]. (Montréal, QC: Université de Montréal, 2011).

597 124. Badgley, I. Stratigraphy and Habitation Features at DIA. 4 (JfE 1-4), a Dorset Site in Arctic
598 Quebec. *Arctic* **33**, 569-584 (1980).

599 125. Stenton, D. R. Recent Archaeological Investigations in Frobisher Bay, Baffin Island, N.W.T. *Can. J.*
600 *Archaeol.* **11**, 13-48 (1987).

601 126. Howse, L. Revisiting an Early Thule Inuit occupation of Skraeling Island, Canadian High Arctic.
602 *Etud Inuit*, **37**, 103-125. (2013).

603

604