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1. Synthesis of wafer-scale MoS2 film and fabrication procedure of MoS2 chips: 

Synthesis of wafer-Scale MoS2: A crucible with MoO3 power (Alfa Aesar 99.95%) 

was placed in Zone 2 with an appropriate amount of sulfur powder (Alfa Aesar 99.999%) 

placed in Zone 1 (upstream of the flow in the tube). The distance between the two zones 

was 30 cm. A carefully cleaned sapphire substrate was placed face-down on the crucible 

containing the MoO3 power. During synthesis, 300 sccm of Ar was used as the carrier 

gas. The synthesis temperature in Zone 1 and Zone 2 was controlled at 180 °C and 

650 °C, respectively. A continuous monolayer MoS2 film was synthesized at 

atmospheric pressure with 10 min sulfuration time. 

 

Supplementary Fig. 1: (a) Schematic diagram of the CVD growth process. (b) 

Photograph of a 2 in. sapphire wafer uniformly covered with CVD-grown MoS2. 

Fabrication of MoS2 integrated circuits: 

The MoS2 FETs and circuits are fabricated on a wafer-scale sapphire substrate 

uniformly covered with a CVD-grown MoS2 film. The contact electrodes (35 nm Au), 

source, and drain contacts were patterned with traditional laser writing tool 

(MicroWriter ML3) and subsequently deposited using electron beam (E-beam) 

evaporation. CF4 plasma etching was performed to define the MoS2 channel region. In 

order to increase VT and reduce the leakage current in the device, a seed layer (1 nm 

SiO2) was deposited using E-beam evaporation followed by furnace annealing in 



oxygen at 100 °C. Then, 20-nm-thick HfO2 was subsequently grown via atomic layer 

deposition (ALD) as the main dielectric layer. Then lithography is used again to define 

the via holes and SF6 plasma etching was used to etch the via through the dielectric 

layer. Then a 30-nm-thick Au metal was deposited to fill the via holes using E-beam 

evaporation. A final lithography and lift-off process was used to form the top metal 

layer (35 nm Au), which was deposited by thermal evaporation. 

Characterization and electrical measurements: 

Uniformity of the CVD-grown MoS2 film was examined using Raman 

spectroscopy measurements (Renishaw inVia) at four points in different regions of a 

1×1 cm2 sample. The electrical properties of the MoS2 FETs and circuits were measured 

with a probe station connected to a semiconductor analyzer (Agilent B1500A). 

 

Supplementary Fig. 2 (a) Photograph of a 1×1 cm2 MoS2 chip cut from a 2-in. wafer. 

(b) Corresponding Raman spectra were measured at the points labeled a-d on the wafer. 

  



2. Physical modeling of MoS2 TG-FETs 

The contact between the metal electrode at the source (drain) and the MoS2 forms 

a Schottky contact. The device is divided into three parts: the drain output (D) to drain 

the contact (d), a channel region spanning from d to s, and s to the source output (S). 

Each section is considered a separate area with different voltage and current 

characteristics. Because these regions are in series, we have 𝜕𝐼𝑑𝑠(𝑥)/𝜕𝑥 = 0, and the 

following relation holds: 

𝐼𝐷→𝑑 = 𝐼𝑑→𝑠 = 𝐼𝑠→𝑆 = 𝐼𝐷𝑆 (1) 
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Supplementary Fig. 3 Schematic device structure and current distribution. 

Considering interfacial defects as acceptors, the effective energy 𝐸it is located 

below the conduction band, and the effective trap density is 𝐷it. To simplify the model, 

it is assumed here that 𝐷𝑖𝑡  is a delta function of energy, and this method can be 

generalized. With a certain deviation, the number of captured carriers (𝑁𝑖𝑡) is given by: 

𝑁𝑖𝑡 = ∫ 𝐷𝑖𝑡𝑓(𝐸)𝑑𝐸
𝐸0

−𝐸0

= 𝐷𝑖𝑡/(1 + exp⁡(
𝐸0 − 𝐸𝑖𝑡 − 𝑞𝑉𝐹

𝑘𝐵𝑇
)) (2) 

𝑛2𝐷 = 𝑁𝑖𝑡 +
1

𝑞𝑇2𝐷
(𝜀𝑇𝑂𝑋

𝑉𝐺 − 𝛥Φ𝑚/𝑞 − 𝜑(𝑥)

𝑇𝑇𝑂𝑋
− 𝜀𝐵𝑂𝑋

𝜑(𝑥)

𝑇𝐵𝑂𝑋
⁡) = 𝑁𝑖𝑡 + 𝜆1 (𝑉𝐺 −

𝛥Φ𝑚

𝑞
) − 𝜆2𝜑(𝑥)⁡⁡⁡⁡(3) 

𝜆1 =
1

𝑞𝑇2𝐷

𝜀𝑇𝑂𝑋
𝑇𝑇𝑂𝑋

, 𝜆2 =
1

𝑞𝑇2𝐷
(
𝜀𝑇𝑂𝑋
𝑇𝑇𝑂𝑋

+
𝜀𝐵𝑂𝑋
𝑇𝐵𝑂𝑋

) 



Where 𝑇𝑇𝑂𝑋 and 𝑇𝐵𝑂𝑋 are the thickness of the gate dielectric layer and substrate 

insulation layer, respectively, 𝑉𝐺  is gate voltage, 𝛥𝛷𝑚 = 5.54⁡𝑒𝑉  is the work 

function of metal gate. 𝜀𝑇𝑂𝑋 is the dielectric constant of HfO2 gate dielectric layer, 

𝜀𝐵𝑂𝑋 is the dielectric constant of Al2O3 substrate, 𝑇2𝐷 is the thickness of monolayer 

MoS2. According to the drift-diffusion law, carrier transport can be described as follows: 

𝐼(𝑥) = 𝑞𝑊𝑇2𝐷[𝑛2𝐷(𝑥) + 𝑁𝑖𝑡(𝑥)]𝜇(𝑥)
𝑑𝑉𝐹(𝑥)

𝑑𝑥
⁡ (4) 

where W is the channel width and 𝜇(𝑥) is the carrier mobility.  Integrating Eq. (4) 

along the channel from drain to source gives the current: 

𝐼𝑑→𝑠 =
𝑞𝑊𝑇2𝐷𝜇𝑒𝑓𝑓

𝐿
((𝑁𝑖𝑡 + 𝜆1(𝑉𝐺 − 𝛥Φ𝑚/𝑞) +

𝑘𝐵𝑇

𝑞
𝜆2) (𝜑𝐷

′ − 𝜑𝑠
′) − 𝜆2

(𝜑𝐷
′ 2 − 𝜑𝑠

′2)

2
⁡)⁡⁡⁡(5) 

where 𝜇𝑒𝑓𝑓 is the effective carrier mobility in the channel and⁡𝐿 is the channel length. 

The I-V curve is in the form of a transcendental equation with fixed source-drain 

voltage. The equation can be converted into an explicit function of gate voltage with 

respect to the current. 

 

Supplementary Fig. 4. Theoretical transfer curve (red) and measured data (black). The 

dimensions of the device are W = 90 um, L = 20 um, TTOX = 20 nm, and T2D = 0.8 nm.  



3. Level-62 SPICE model 

𝑉𝑇𝑂 1.24𝑉 𝐼0 6⁡𝐴/𝑚 

𝐴𝑇 3e-8 m 𝐵𝐿𝐾 0.001 

𝐵𝑇 1.9e-6 m 𝐷𝐷 1.4e-7 m 

𝑉𝑆𝑇 2⁡𝑉 𝐷𝐺 2e-7 m 

𝑉𝑆𝐼 2⁡𝑉 𝐼00 150⁡𝐴/𝑚 

𝑇𝑂𝑋 3e-8⁡m 𝐸𝐵 0.68⁡𝑒𝑉 

𝐸𝑃𝑆𝐼 18 𝑀𝑈𝑂 1.7⁡𝑐𝑚2/𝑉 ∙ 𝑠 

𝐴𝑆𝐴𝑇 1 𝑀𝑈1 0.007⁡𝑐𝑚2/𝑉 ∙ 𝑠 

𝑀𝑈𝑆 1⁡𝑐𝑚2/𝑉 ∙ 𝑠 𝑀𝑀𝑈 1.3 

𝐸𝑇𝐴 4.5 𝑇𝐻𝐸𝑇𝐴 0⁡𝑚/𝑉 

𝑅𝐷 0⁡𝛺 𝐷𝐸𝐿𝑇𝐴 2 

𝑅𝑆 90000⁡𝛺 𝑀𝐸 2.5 

Supplementary Table 1. The parameters of the MoS2 level-62 SPICE model. 

1. 𝑉𝑇0 

𝑉𝑇0 is defined as the turn-on voltage of the transistor at zero bias. For thin-film 

transistors, the effective turn-on voltage fluctuates around 𝑉𝑇0. The value of 𝑉𝑇0 on 

the transfer characteristic curve refers to the voltage applied to the gate electrode 

required to induce the channel region into a conductive state. 



2. 𝐴𝑇 and 𝐵𝑇 

The parameters 𝐴𝑇  and 𝐵𝑇  are both used to describe the influence of drain-

induced barrier lowering (DIBL) on the turn-on voltage. The initial value of 𝐴𝑇 is 

3 × 10−8⁡m/V , and the initial value of 𝐵𝑇  is 1.9 × 10−6⁡m ∙ V . When the channel 

length 𝐿𝑒𝑓𝑓 is sufficiently large, the magnitude of 𝑉𝑡𝑒𝑓𝑓 is approximately a constant 

equal to 𝑉𝑇0. 

3. 𝑉𝑆𝑇⁡and⁡𝑉𝑆𝐼 

The parameters 𝑉𝑆𝑇  and 𝑉𝑆𝐼⁡ are used to adjust the effect of 𝑉𝑔𝑠  on the 

threshold voltage. When 𝑉𝑆𝑇  increases, the transfer effective turn-on voltage 

decreases relatively, and the subthreshold area in the characteristic curve shifts to the 

right, even if the threshold voltage decreases. The initial values of VST and VSI are 2 

V. 

4. 𝐼0 

𝐼0 is defined as the leakage scaling constant. The leakage current is more sensitive 

to changes in I0 when VDS is larger. 

5. BLK 

BLK represents the degree of contribution of 𝑉𝐷𝑆 to 𝐼𝑙𝑒𝑎𝑘. Its physical meaning 

is the potential barrier formed by the leakage current, which is used to adjust the interval 

between the transfer characteristics of the transistor. 

6. DD 

DD reflects that the drain terminal voltage 𝑉𝐷𝑆  affects the electric field 

distribution at the drain terminal, thereby affecting the carrier emissivity. The initial 



value is 1.4x10-7 m. 

7. DG 

DG also quantifies how the drain terminal voltage 𝑉𝐺𝑆 affects the longitudinal 

electric field distribution near the gate, and thus the carrier emissivity. The initial value 

is DG = 2×10-7 m. 

8. 𝑀𝑈𝑆 

𝑀𝑈𝑆 characterizes the mobility in the subthreshold region in units of cm2/V ∙ s. 

9. 𝐸𝑇𝐴 

𝐸𝑇𝐴 is a model parameter used to adjust the slope of the transfer current in the 

subthreshold region. ETA is a dimensionless number with an initial value of 7. The 

expression of the leakage current in the cut-off level 62 TFT model is: 

𝐼𝑙𝑒𝑎𝑘 = 𝐼0 ∙ 𝑊𝑒𝑓𝑓 [exp (
𝑞∙𝐵𝐿𝐾∙𝑉𝐷𝑆

𝑘∙𝑇
) − 1] ∙ [𝑋𝑇𝐹𝐸(𝐹) + 𝑋𝑇𝐸] + 𝐼leakge   (6) 

Linear area: 

𝐼 = 𝜇𝐹𝐸𝑇 ∙ 𝐶𝑜𝑥 ∙
𝑊𝑒𝑓𝑓

𝐿𝑒𝑓𝑓
∙ (𝑉𝐺𝑇𝐸 ∙ 𝑉𝐷𝑆 −

𝑉𝐷𝑆
2

2𝐴𝑆𝐴𝑇
) ⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡⁡𝑉𝐷𝑆 < 𝐴𝑆𝐴𝑇 ∙ 𝑉𝐺𝑇𝐸   (7) 

Saturation zone: 

𝐼 =
𝜇𝐹𝐸𝑇∙𝐶𝑜𝑥∙𝑊𝑒𝑓𝑓∙𝑉𝐺𝑇𝐸

2 ∙𝐴𝑆𝐴𝑇

2𝐿𝑒𝑓𝑓
⁡𝑓𝑜𝑟⁡⁡𝑉𝐷𝑆 > 𝐴𝑆𝐴𝑇 ∙ 𝑉𝐺𝑇𝐸         (8) 

where,    𝑉𝐺𝑇𝐸 = 𝑉𝑠𝑡ℎ ∙ [1 +
𝑉𝐺𝑇

2∙𝑉𝑠𝑡ℎ
+√𝐷𝐸𝐿𝑇𝐴2 + (

𝑉𝐺𝑇

2∙𝑉𝑠𝑡ℎ
− 1)

2

]         (9) 

In Eqs. (7) and (8), the parameter 𝐴𝑆𝐴𝑇 is introduced to adjust the relationship 

between the drain saturation voltage 𝑉𝐷𝑆𝐴𝑇  and the gate voltage 𝑉𝐺𝑇𝐸 . The initial 

value is 𝐴𝑆𝐴𝑇 = 1, 𝑉𝐷𝑆𝐴𝑇 = 𝐴𝑆𝐴𝑇 ∙ 𝑉𝐺𝑇𝐸. 𝜇𝐹𝐸𝑇 is the charge mobility in the channel, 



𝐶𝑜𝑥 is the equivalent gate oxide layer capacitance per unit area, 𝐿𝑒𝑓𝑓 is the effective 

channel length, and 𝑊𝑒𝑓𝑓 is the effective channel width. Finally, 𝜇𝐹𝐸𝑇 in Eqs. (7-8) 

is the field effect mobility of the transistor when the device is turned on. 
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Supplementary Fig. 5. Measurements and 62 level SPICE model results. 

  



4. ANN IC structure and MAC operation analysis 

 

Supplementary Fig. 6 Schematic of the ANN integrated circuit with various functional 

modules. 

The above shows a schematic diagram of our MoS2 ANN IC which consists of 

convolution calculation, memory, activation function, integrated weight update, and 

time control circuits. 
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Supplementary Fig. 7 Schematic structure of a normal MoS2 FET (left) and a dual 

gate transistor for multiplication operation (right). 

A normal MoS2 FET is a three-port device. In this paper the presented transistor 

(T2) capable of multiplication operation is a dual-gate structured device, and the model 

can be simplified as transistor T21 and transistor T22 in series. 𝑉𝐺𝑆2  is the voltage 

difference between the gate and source of transistor T22, and VDS2 is the voltage 

difference between the drain and source of transistor T22. When 𝑉𝐺𝑆2 >

𝑉𝑡ℎ−𝐺2⁡𝑎𝑛𝑑⁡𝑉𝐷𝑆2 < 𝑉𝐺𝑆2 − 𝑉𝑡ℎ−𝐺2 , transistor T22 operates in the linear region. The 

current 𝐼𝑑 passed by transistor T22 is expressed as follows: 

𝐼𝑑 =
𝜇𝑛∙𝐶𝑜𝑥∙𝑊

2𝐿
∙ [2(𝑉𝐺𝑆2 − 𝑉𝑡ℎ−𝐺2)𝑉𝐷𝑆2 − 𝑉𝐷𝑆2

2 ]            (10) 

where 𝜇𝑛 is the free electron mobility, 𝐶𝑜𝑥 is the gate capacitance per unit area, and 

𝑊 and 𝐿 are the channel width and length, respectively. When 𝑉𝐷𝑆2 in (1) is very 

small, the quadratic term 𝑉𝐷𝑆2
2  can be ignored, and Eq. (1) can be simplified as follows: 

𝐼𝑑 =
μn∙𝐶𝑜𝑥∙𝑊

𝐿
∙ (𝑉𝐺𝑆2 − 𝑉𝑡ℎ−𝐺2)𝑉𝐷𝑆2              (11) 

As shown in supplementary Fig. 7, the gate of transistor T21 is connected to the 

input signal 𝑉𝐺1 , and transistor T21 operates in the saturation region. According to 



Kirchoff’s voltage law, the relationship between 𝑉𝐺1 and 𝑉𝐷𝑆2 is 

𝑉𝐷𝑆2 = 𝑉𝐺1 − 𝑉𝑡ℎ−𝐺1                             (12) 

and 

𝑉𝐺2 = 𝑉𝐺𝑆2                       (13) 

Substituting (12) and (13) into (11) gives: 

𝐼𝑑 =
𝜇𝑛∙𝐶𝑜𝑥∙𝑊

𝐿
∙ (𝑉𝐺2 − 𝑉𝑡ℎ−𝐺2)(𝑉𝐺1 − 𝑉𝑡ℎ−𝐺1)         (14) 

where 
μn∙𝐶𝑜𝑥∙𝑊

𝐿
 is a constant, which can be recorded as 𝛽, so: 

𝐼𝑑 = 𝛽(𝑉𝐺2 − 𝑉𝑡ℎ−𝐺2)(𝑉𝐺1 − 𝑉𝑡ℎ−𝐺1)            (15) 

where 𝛽 is a constant and the current 𝐼𝑑 has a linear correlation with the product 

of the input signal (𝑉𝐺1 − 𝑉𝑡ℎ−𝐺1)  and weight signal (𝑉𝐺2 − 𝑉𝑡ℎ−𝐺2) , giving a 

completed multiplication operation. 

In Eq. (15), (𝑉𝐺2 − 𝑉𝑡ℎ−𝐺2) can be used as a weight 𝑤𝑖𝑗, and (VG2-Vth-G1) can 

be used as the input signal 𝑥𝑗, therefore: 

𝐼𝑑 = 𝛽 ∙ 𝑥𝑗 ∙ 𝑤𝑖𝑗                       (16) 

Addition operation: 
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Supplementary Fig. 8 Schematic showing a circuit for an addition operation. 



The current 𝐼𝑑 is given by 

𝐼𝑑 = 𝐼𝑑1 + 𝐼𝑑2 +⋯+ 𝐼𝑑10                 (17) 

𝐼𝑑 = 𝛽 ∙ 𝑥1 ∙ 𝑤𝑖1 + 𝛽 ∙ 𝑥1 ∙ 𝑤𝑖1 +⋯+ 𝛽 ∙ 𝑥10 ∙ 𝑤𝑖10       (18) 

𝐼𝑑 = 𝛽 ∙ (𝑥1 ∙ 𝑤𝑖1 + 𝑥1 ∙ 𝑤𝑖1 +⋯+ 𝑥10 ∙ 𝑤𝑖10)        (19) 
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Supplementary Fig. 9 Total current as a function of the number of multiplier branches 

for different drain voltage values. 

As shown in supplementary Fig. 9, when the transistor T2 has a different drain 

voltage, the current summation of all branches is also different with an increasing slope. 

Changing the drain voltage can suit different application scenarios. 

  



5. Calibration: Non-ideal weight correction 

A digital-to-analog converter is one of the key modules used for weight updates. 

Its function is to convert a digital input to an analog output. This conversion is a linear 

conversion. When a digital code is input, the output is proportional to its analog value. 

As shown below, the performance of a digital-to-analog converter is mainly 

characterized by its differential nonlinearity (DNL) and integral nonlinearity (INL). 
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Supplementary Fig. 10 Working principle of DACs. 

For an N-bit DAC, the digital input range is 0 to 2N-1. When the digital input 

changes by "1", the value of the analog output change is called the minimum quantized 

analog increment. The value is characterized by the Least Significant Bit (LSB). 

Assuming its maximum analog value is X, its ideal minimum quantized analog 

increment is: 

1⁡LSB =
𝑋

2𝑁−1
⁡                       (20) 

Because of the non-linearity of the DAC, when the input digital quantity changes 

by "1", its output value may not be equal to 1 LSB. This error can be characterized by 

DNL. DNL refers to the ratio of the difference between two adjacent analog output 

values: 



DNL𝐾 =
𝑋𝐾−𝑋𝐾−1−1⁡LSB

1⁡LSB
                    (21) 

where XK and XK-1 are the analog outputs corresponding to input digital quantities K 

and K-1, respectively. Differential nonlinearity shows the uniformity of the analog 

output from the digital-to-analog converter when the digital input changes. If the 

adjacent input digital codes changes and its corresponding analog output changes by 1 

LSB, then the output of the digital-to-analog converter (DAC) is ideally uniform. 

However, due to processing fluctuations and transistor uniformity, the actual DNL is 

usually larger than 1 LSB. The larger the DNL is, the more nonlinearity the DAC 

performs. Higher quality MoS2 film, better fabrication recipes and more matched design 

methods are required to reduce DNL.  

Due to the unavoidable nonlinearity of digital-to-analog conversion, there is a 

deviation between the ideal analog output and actual analog output. This deviation is 

characterized in terms of INL. For example, when the digital quantity K is input, the 

actual output is XK, and the ideal output is X𝐾
′ =

𝑋

2𝑁−1
× 𝐾. Therefore, 

𝐼𝑁𝐿𝐾 =
X𝐾−X𝐾

′

X𝐾
′                         (22) 

The integral linear error is closely related to the differential linear error as follows: 

𝐼𝑁𝐿𝐾 =
∑ 𝐷𝑁𝐿𝑖
𝐾
𝑖=1

𝐾
                       (23) 

The error of DNL and INL mainly affects the weight update accuracy, which 

directly affects the convergence speed. Although the error caused by the fluctuations in 

the process cannot be completely overcome with a symmetric layout, the error in INL 

and DNL can be further overcome by using a calibrated current source. For example, 

when the actual output current is larger than the theoretical value, the output current 



can be made closer to the theoretical value by reducing the current from the current 

source. As shown in Fig. 5h in the maintext, the step error is 1 LSB when the calibration 

circuits are turned on, and the calibrated INL and DNL values shows that the DAC has 

an 8-bit accuracy. 

6. Artificial neural networks and deep learning algorithm 

Convolutional neural networks can be divided into two parts. One part is the 

convolution operation that is the basis for deep learning, and the other part is an 

activation function part, which provides a judgment of the network update. The use of 

back propagation algorithms provides weight convergence and adjustment. The input 

of the convolutional layer is composed of pixels of the image and the output of the 

convolutional layer represents the extracted feature of the input image. The purpose of 

the fully-connected layer is to use these features to classify the input image. 

The output from the neural network layer uses the activation function to determine 

the final output. The input from the activation function is the input to the previous 

network layer, which is a vector of values between 0 and 1 of any value greater and 

converts them into a vector. The commonly-used activation functions are the sigmoid 

function, hyperbolic tangent function, and rectified linear unit (ReLU) function. In this 

study, continuously differentiable functions are used for activation. The ReLU function 

has several important disadvantages. For example, if the learning rate is too high, 

neurons are not activated during the training process, resulting in a neural network with 

greatly reduced efficiency. Therefore, we present an activation function that can 

overcome this drawback. 

For application of such convolutional neural network, a normalization of input 

data is necessary. The 8-bit pressure sensing data ranges from 0 to 255. Since the MoS2 



FET provides a high linearity for small bias signals, the magnitude of the input voltage 

determines the gray scale range. Therefore, a linear approximation is applied to the 

input image. After such pre-processing, the image is now transformed to digital data 

and can be used in a convolution operation. Each image can be viewed as a matrix of 

pixel values, as shown in the supplementary Fig. 12, 

 

 

Supplementary Fig. 12 The data set used for the ANN training. 



The use of deep learning algorithms to adjust weights is the key of identification 

and classification. As an example, if the letter Z was used as an input, the target 

probability for the class Z is 1, while the target probability for the other three classes is 

0, namely: 

• Image = Z 

• target vector = [0, 0, 1] 

The process for training the convolutional neural network can be summarized as 

follows: 

Step 1: The training library is produced by a simple program, and we initialize all 

weights with random values. The data of the corresponding matrix are shown in 

supplementary Fig. 12. Instead of simply using 0 or 1 to represent the pixel, our image 

also 256 gray levels for each pixel to improve the accuracy of the neural network 

learning process. 

Step 2: The neural network receives a training image as an input, and the 

probability the image corresponds to each class is determined using forward 

propagation (convolution, activation in the and hidden layer, and forward propagation 

to the fully connected layer). The target matrix corresponds to vectors [0, 0, 1] for Z, 

[0, 1, 0] for N, and [1, 0, 0] for V.  

Step 3: Calculate the total error for the output layer (calculate the sum of the 3 

categories) 

Total Error = ∑½ (target value – output value)² 

Step 4:  Use BP to calculate the gradient according to the output total error of the 

network, and use the gradient descent algorithm to update the values/weights of all 



filters and parameter values to minimize the output error. In terms of a unit weight wij, 

the required correction for each step given by the steepest descent method is 

∆𝑤ij = −𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
= 𝜂∑ [𝑇𝑖

𝑠 − 𝑂𝑖
𝑠]𝜑′(ℎ𝑖

𝑠)𝐻𝑗
𝑠 = 𝜂∑ 𝛿𝑖

𝑠𝐻𝑗
𝑠

𝑠𝑠          (24) 

where 

𝛿𝑖
𝑠 = 𝜑′(ℎ𝑖

𝑠)[𝑇𝑖
𝑠 − 𝑂𝑖

𝑠]                     (25) 

The weight from an input cell to a hidden cell w jk is 

∆𝑤𝑗𝑘 = −⁡𝜂
𝜕𝐸

𝜕𝑤𝑗𝑘
= 𝜂 ∑ [𝑇𝑖

𝑠 − 𝑂𝑖
𝑠]𝜑′(ℎ𝑖

𝑠)𝑤𝑖𝑗𝑠,𝑖 𝜑′(ℎ𝑗
𝑠)𝐼𝑗

𝑠 = 𝜂∑ 𝛿𝑖
𝑠𝑤𝑖𝑗𝜑

′(ℎ𝑗
𝑠)𝐼𝑘

𝑠
𝑠,𝑖 =

𝜂∑ 𝛿𝑗̅
𝑠𝐼𝑘
𝑠

𝑠                                                           (26) 

where 

𝛿𝑗
𝑠 = 𝜑′(ℎ𝑗

𝑠)∑ 𝑤𝑖𝑗𝛿𝑖
𝑠

𝑖                     (27) 

This iterative algorithm aims to ensure {wij, wjk} provides high accuracy. The 

value of η is the learning efficiency. 

Step 5: Repeat steps 1 to 4 for all the images in the training dataset. 

 


