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Figure S1. Synthesis of functional bottlebrush polymers and macromonomers: (1) synthesis of
random polydimethylsiloxane-poly(ethylene glycol) bottlebrush copolymer (PDMS-r-PEG)
through controlled radical copolymerization of polydimethylsiloxane-methacrylate (PDMSMA)
and polyethyleneglycol-methacrylate (PEGMA) macromonomers, (2) mesylation of PEGMA
macromonomer, (3) synthesis of azide-terminated PEGMA from mesylated macromonomer, (4)
synthesis of random polydimethylsiloxane/azide-terminated poly(ethylene glycol) (PDMS-r-
PEG.N3) bottlebrush copolymer, and (5) reduction of PDMS-7-PEG.Nj3 to achieve PDMS-7-
PEG.NH?: bottlebrush copolymer (for details of illustrated reactions, please see Methods
Section).
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Figure S2. 'H-NMR growth of a random polydimethylsiloxane-poly(ethylene glycol) brush
(PDMS-r-PEG, n:m, 95:5, nser: 14, nse2: 12) (400 MHz, CDCL,): 6.16, 5.57 (CH,=C(CH,)C=0,

PDMS and PEG macromonomer mixture, s, 1 H), 4.12 (CO-OCHZ-, PDMS macromonomer, t, 2H),
3.91 (CO-OCH,-, PDMS brush, t, 2H), 3.78 (CO-OCH,-, PEG brush, t, 2H), 3.67 (-OC H,O-,
PEG brush, m, 32H), 0.55 (—CHz—(Si(CH3)2—O)n—CH2—CH2—, PDMS macromonomer and brush
mixture, m, 4H), 0.09 (—(Si(CH3)2—O)n—, PDMS macromonomer and brush mixture, s, 68.2H).
Convppys = ([Area(a + a')/68.2] — [Area(d)/1])/[Area(a + a')/68.2]= 79%. ny, =

Convppys * % = 79% % 1125 = 889.
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Figure S3. a, Growth kinetics of random polydimethylsiloxane-poly(ethylene glycol) (PDMS-r-
PEG) copolymer bottlebrushes. b, Molar ratio of PEG during copolymerization.
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Figure S4. "H-NMR of random polydimethylsiloxane-poly(ethylene glycol) brushes (PDMS-7-
PEG, n:m, 95:5, ng1: 14, ng2: 12) at different stages of synthesis (400 MHz, CDC13): 6.16, 5.57

(CHZZC(CH3)C=O, PDMS macromonomer, s, 1H), 4.12 (CO-OCHZ-, PDMS macromonomer, t,
2H), 3.91 (CO-OCH,-, PDMS brush, t, 2H), 3.78 (CO-OCH,-, PEG brush, t, 2H), 3.67 (-OC H,0-
, PEG brush, m, 32H), 0.55 (—CH2—(Si(CH3)2—O)n—CH2—CH2—, PDMS macromonomer and brush
mixture, m, 4H), 0.09 (—(Si(CH3)2—O)n—, PDMS macromonomer and brush mixture, s, 68.2H)
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Figure S5. "H-NMR of random polydimethylsiloxane-poly(ethylene glycol) brushes (PDMS-7-
PEG, n:m, 95:5, ng1: 70, ng2: 12) at different stages of synthesis (400 MHz, CDC13): 6.16, 5.57

(CH2=C(CH3)C=O, PDMS macromonomer, s, 1H), 4.12 (CO—OCHZ—, PDMS macromonomer, t,
2H), 3.91 (CO-OCH, -, PDMS brush, t, 2H), 3.78 (CO-OCH -, PEG brush, t, 2H), 3.67 (-OC_H ,O-
, PEG brush, m, 32H), 0.55 (—CHz—(Si(CH3)2—O)n—CH2—CH2—, PDMS macromonomer and brush
mixture, m, 4H), 0.09 (-(Si(CH3)2-O)n-, PDMS macromonomer and bottlebrush mixture, s, 438H).
70 do not show on NMR in CDCl3
brushes. Convppys = ([Area(a + a")/438]

Convppys * [[ ]] = 81% * 375 = 304.

Peak ¢’ for brushes with nsc;: in contrast to ns3;: 14

— [Area(d)/1])/[Area(a)/438] = 81%. n,, =
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Figure S6. 'H-NMR of poly(ethylene glycol) macromonomer functionalization at different stages.
A, poly(ethylene glycol) (PEG) macromonomer (400 MHz, CDC13): 5.98, 541

(CH2=C(CH3)C=O, s, 1H), 4.15 (CO-OCH,-, t, 2H), 3.59 (CO-OCH,-CH,0-, t, 2H), 3.48 (-
oC 2H 4O—, m, 32H), 3.42 (—CHZOH, t,2H), 1.8 (CH2=C(CH3)C=O, s, 3H). B, PEG macromonomer
after mesylation reaction (400 MHz, CDC13): 5.98, 541 (CH2=C(CH3)C=O, s, 1H), 4.22 (-
CH,0SO,CH,, t, 2H), 4.15 (CO-OCH -, t, 2H), 3.59 (CO—OCHZ—CHZO—, t, 2H), 3.48 (—OC2H4O—
, m, 32H), 2.96 (-CH,OSO,CH,, s, 3H), 1.8 (CH_=C(CH,)C=0, s, 3H). C, azide-terminated PEG
macromonomer (400 MHz, CDC13): 6.05, 5.52 (CHZZC(CH3)C=O, s, 1H), 4.21 (CO-OCH-, t,
2H), 3.68 (CO—OCHz—CHzO—, t, 2H), 3.60 (—OC2H4O—, m, 32H), 3.37 (—CH2N3, t, 2H), 1.90
(CHZZC(CHS)C=O, s, 3H).
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Figure S7. 'H-NMR (400 MHz, CDCIS) of A, random polydimethylsiloxane/azide-terminated

poly(ethylene glycol) (PDMS-r-PEG.N3), and B, random polydimethylsiloxane/amine-terminated
poly(ethylene glycol) (PDMS-r-PEG.NH>) bottlebrush copolymer.
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Figure S8. 'H-NMR of polydimethylsiloxane diisocyanate crosslinker (NCO.PDMS.NCO) at different
stages of synthesis (400 MHz, CDCI3): 3.18 (-CHZ-NHZ-, crosslinker, t, 2H) 2.69 (-CHZ-NHZ, t, 2H), 0.09

(-(Si(CH,) -O) -, s, 235H).
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Figure S9. Leachability of injectable elastomer compared to a commercial silicone gel implant
into aqueous medium. A, Time-resolved *H-NMR of sol extract from a commercial silicone gel
used in breast implants (Silicone Gel-1 in Figure S9) in aqueous medium monitored over one
month (400 MHz, CDCls): 4.70 (Residual H20), 1.17, 0.01 (leachable materials). B, Time-
resolved *H-NMR of sol extract from a NCO:OH (1:8) injectable elastomer in aqueous medium
monitored over a month (400 MHz, D20): 4.70 (Residual H20); no leachables observed.
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Figure S10. Leachability of three types of commercial silicone gel implants into aqueous medium
over a month compared to the injectable elastomer* of NCO:OH (1:8) (400 MHz, CDCls); data

shows mass of leachables from 5 gr gel after one month incubation in 10 ml aqueous medium at
room temperature.
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Figure S11. Leachability of a commercial silicone gel used in breast implants (Silicone Gel-1) (the
right sample in each image) on a paper substrate compared to the injectable elastomer of NCO:OH
(1:8) (the left sample in each image). (A1) Front image after 1 hour, (A2) back image after 1 hour,
(B1) front image after 1 week, (B2) back image after 1 week, (C1) front image after 1 week, (C2)
back image after 1 week, (D1) front image after 1 month, and (D2) back image after 1 month. The
leached component from the commercial silicone gel was shown with black arrows.
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Figure S12. Atomic Force Microscopy of brush polymers. Height micrographs of PDMS-r-PEG
bottlebrushes deposited on mica by Langmuir-Blodget technique for PDMS: A, n4.14, and B, n4.70.
nyp, 1S determined as L,, /1, where L,, is number average measured bottlebrush contour length via
AFM and [,= 0.25 nm is the length of bottlebrush backbone monomeric unit. Bottlebrush
dispersity, b = M,, /M, is calculated from analysis of > 300 molecules.

Table S1. Molecular characterization of PDMS-r-PEG bottlebrushes.

Brush Polymer | nby (NMR)® Nbb (AFM)®@ D (AFM)®
Nsc14 889 856+55 1.18
Nsc /0 304 281+35 1.16

1 Number average degree of polymerization of PDMS-r-PEG bottlebrush (ns») determined by
'H-NMR, @ nps, and @ dispersity (D) of bottlebrushes determined by AFM (Figure S8). n,,;, was
determined by AFM as L, /l,, where L,, is number average measured bottlebrush contour length
via AFM and [,= 0.25 nm is the length of bottlebrush backbone monomeric unit. Contour length
was measured via in-house software. Bottlebrush dispersity, = M,,,/M,, was calculated based on
analysis of ensembles of > 300 molecules to ensure standard deviation of the mean < 10%.
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Figure S13. Injectable elastomers: A, double-syringe injection, B, curing at room temperature, C,
handling, and D, super-soft tissue-mimetic mechanics (Supplementary Video 1).
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Figure S14. Evolution of elastic (G ") and loss modulus (G ) as a function of time for injectable
elastomers composed of brush chains with hydroxyl groups cured with a macromolecular
diisocyanate crosslinker NCO:OH (1:1) at temperatures of 0 and 37°C. The premixed injectable
formulation shows gelation at elevated temperature (37°C), while it remains fluid at low
temperature (0°C). The formulation remained fluid after 2 months storage at -20°C, and showed
gelation with increasing temperature.
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Figure S15. Polydimethylsiloxane (PDMS) bottlebrushes with longer side chains, yet similar

molecular weight (M,, = 1,540,000: n,.14, n;,,1540 vs. M,, = 1,520,000: n,.70, n;,,304) possess
lower melt viscosity.
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Figure S16. Decoupling gelation time (tz.;) and tissue-mimetic mechanics of solvent-free
supersoft injectable elastomers: a, Evolution of storage (G') and loss (G”) moduli as a function of
time for injectable elastomers comprising NCO:OH ratio 1:4 at different content of catalyst (200,
400, and 600 ppm). b, True stress-elongation (o,,.— 1) curve profiles of the injectable supersoft
solvent-free elastomer comprising NCO:OH ratios 1:4 at different content of catalyst (200, 400,
and 600 ppm).

Table S2. Structural and mechanical parameters of NCO:OH (1:4) injectable elastomers*
comprising different content of catalyst (200, 400, and 600 ppm (Fig. S16b).

Catalyst? | n,? | ny? | n,? | E(kPa)® | g9 | Eg(kPa)?) | 227 8 | pcalc )
200 14 889 200 4.32 0.104 5.03 3.18 3.10
400 14 889 200 4.35 0.097 5.00 3.24 3.21
600 14 889 200 4.23 0.095 4.85 3.06 3.24

1 Catalyst content (DBTDL, ppm). Degrees of polymerization (DP) of ? side-chains and ® backbone of

bottlebrush macromolecules prior to crosslinking determined by "H-NMR. ¥ Nominal DP of the backbone
strand between cross-links. ®Structural Young’s modulus (G) and ® strain-stiffening parameter obtained
by fitting stress-strain curves with Equation 1. ” Young’s modulus from Equation 2. & Experimental
elongation at break. ¥ Theoretical elongation at break as A,,4x caic = B7%°. *The gel fraction of injectable
elastomers was > 97%.
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Figure S17. Cyclic loading-unloading curves of injectable elastomer prepared with NCO:OH
molar ratio of 1:4 at elongation of 4 =1.5 (pink), 2 (green), 2.5 (red), and 3 (blue).
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Figure S18. Synthesis of injectable dynamic tissue-mimetic elastomers: a, Synthesis of random
polydimethylsiloxane-poly(ethylene glycol) (PDMS-r-PEG) bottlebrush macromolecules
comprising furan moieties. b, Synthesis of a linear bifunctional polydimethylsiloxane (PDMS)
crosslinker with maleimide moieties: (1) synthesis of exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic
anhydride (furan-protected maleic anhydride), (2) synthesis of 2-(2-hydroxyethyl)-3a,4,7,7a-
tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (furan-protected N-(2-hydroxyethyl)
maleimide), (3) functionalization of chlorine terminated PDMS with furan-protected N-(2-
hydroxyethyl) maleimide, (4) N-(2-hydroxyethyl) maleimide terminated PDMS as linear
bifunctional crosslinker for injectable dynamic tissue-mimetic elastomers (for details of
illustrated reactions, please see Methods Section).
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Figure S19. a, Injectable reversible tissue-mimetic elastomers composed of random

polydimethylsiloxane-poly(ethylene glycol) (PDMS-r-PEG) comprising furan (F) moieties with a
controlled fraction of a linear bifunctional crosslinker with maleimide (M) moieties (e.g., FIM1
corresponds to 1:1 molar ratio). b, Evolution of storage (G') and loss (G") moduli as a function of
time for injectable dynamic elastomer FIM1 at temperatures of 37 and 60°C. At 37 °C, the curing
time was about 11h, which enables injection of bulky body implants during time-consuming
surgery. ¢, True stress-elongation (o:,4.—A) curve profiles of the injectable dynamic tissue-
mimetic elastomers. d, Experimental elongation-at-break (4,4 ¢,) demonstrates good agreement

with the maximum strand elongation calculated as A,qx caic = Rmax/_ [(RZ,) = B

Table S3. Structural and mechanical parameters of injectable dynamic elastomers based on Diels-
Alder chemistry (Fig. S19c¢).

FMY | ng.? | npp® | n,® | E(kPR)® | B9 | Eg (kP)? | 257 8 | Acale 9) | Gel fraction

F1IM1 14 889 50 15.3 0.23 22.3 2.1 2.1 > 98%
F1MO0.5 14 889 100 6.3 0.14 7.8 2.7 2.6 > 96%
FIMO0.25 | 14 889 | 200 1.5 0.12 1.8 2.9 2.8 >91%

Y The ratio of furan (F) moieties on PDMS-r-PEG bottlebrushes to maleimide (M) moieties on linear
bifunctional crosslinker (e.g., FIM1 corresponds to 1:1 molar ratio). Degrees of polymerization (DP) of 2
side-chains and ® backbone of bottlebrush macromolecules prior to crosslinking determined by "H-NMR.
Y Nominal DP of the backbone strand between cross-links. ®Structural Young’s modulus (G) and ® strain-
stiffening parameter obtained by fitting stress-strain curves with Equation 1. ” Young’s modulus from
Equation 2. ® Experimental elongation at break. ® Theoretical elongation at break as gy caic = 7%
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Figure S20. Synthesis of injectable photocurable tissue-mimetic elastomers: a, Injectable dynamic
tissue-mimetic elastomers composed of random polydimethylsiloxane-poly(ethylene glycol)
(PDMS-r-PEG) comprising photocurable methacrylate moieties. b, True stress-elongation
(o4ue—A) curve profiles of the injectable photocurable tissue-mimetic elastomers.

Table S4. Structural and mechanical parameters of injectable photocurable* elastomers (Fig.
S20c).

network®? | ng? | n,,? | ny® |E(kPa)® | B9 | Eg (kPa)? | 22P 8 | acalc9) | gel fraction
Photocure-1.5 | 14 889 | 100 4.8 0.06 5.2 4.2 4.1 > 93%
Photocure-3.0 | 14 889 | 200 1.7 0.05 1.8 4.9 4.5 > 89%

Y Two injectable photocurable tissue-mimetic elastomers are composed of random polydimethylsiloxane-
poly(ethylene glycol) (PDMS-r-PEG) comprising controlled fraction of PEG macromonomers with
chains-end methacrylate moieties at 1.5 and 3 mol.%, respectively. Degrees of polymerization (DP) of

side-chains and ® backbone of bottlebrush macromolecules prior to crosslinking determined by "H-NMR.
“ Nominal DP of the backbone strand between cross-links. ®Structural Young’s modulus (G) and ® strain-
stiffening parameter obtained by fitting stress-strain curves with eq 1. ” Young’s modulus from eq 2. &
Experimental elongation at break. ® Theoretical elongation at break as Apmax carc = B7°°.

* The details of conditions of UV procedure is included in the Materials and Methods Section: Functional
bottlebrushes were dried with dry N, flow until a constant mass was reached. The functionalized brushes
were subsequently cured in the presence of diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide/2-hydroxy-
2-methylpropiophenone as photo-initiator under N» using a UV illumination chamber (365 nm UV
lamp, 0.1 mW/cm?, 10 cm distance).
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Figure S21. Schematic representation of determining the textural properties including springiness
(D2/D1), resilience (A4/A3), and cohesiveness (A2/Al) of injectable non-leaching tissue-
mimetic elastomers and commercial implants composed of silicone gel. Texture profile analysis
was conducted based on a double compression test.
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